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Résumé

Dans cette thèse, nous nous intéressons au problème spécifique de l’apprentissage
de structure de modèles graphiques probabilistes, c’est-à-dire trouver la structure la
plus efficace pour représenter une distribution, à partir seulement d’un ensemble
d’échantillons D ∼ p(v). Dans une première partie, nous passons en revue les
principaux modèles graphiques probabilistes de la littérature, des plus classiques
(modèles dirigés, non-dirigés) aux plus avancés (modèles mixtes, cycliques etc.). Puis
nous étudions particulièrement le problème d’apprentissage de structure de mod-
èles dirigés (réseaux Bayésiens), et proposons une nouvelle méthode hybride pour
l’apprentissage de structure, H2PC (Hybrid Hybrid Parents and Children), mêlant une
approche à base de contraintes (tests statistiques d’indépendance) et une approche
à base de score (probabilité postérieure de la structure).

Dans un second temps, nous étudions le problème de la classification multi-label,
visant à prédire un ensemble de catégories (vecteur binaire y P (0, 1)m) pour un
objet (vecteur x P R

d). Dans ce contexte, l’utilisation de modèles graphiques prob-
abilistes pour représenter la distribution conditionnelle des catégories prend tout
son sens, particulièrement dans le but minimiser une fonction coût complexe. Nous
passons en revue les principales approches utilisant un modèle graphique proba-
biliste pour la classification multi-label (Probabilistic Classifier Chain, Conditional
Dependency Network, Bayesian Network Classifier, Conditional Random Field, Sum-
Product Network), puis nous proposons une approche générique visant à identifier
une factorisation de p(y|x) en distributions marginales disjointes, en s’inspirant des
méthodes d’apprentissage de structure à base de contraintes. Nous démontrons
plusieurs résultats théoriques, notamment l’unicité d’une décomposition minimale,
ainsi que trois procédures quadratiques sous diverses hypothèses à propos de la dis-
tribution jointe p(x, y). Enfin, nous mettons en pratique ces résultats afin d’améliorer
la classification multi-label avec les fonctions coût F-loss et zero-one loss.
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Abstract

In this thesis, we address the specific problem of probabilistic graphical model struc-
ture learning, that is, finding the most efficient structure to represent a probability
distribution, given only a sample set D ∼ p(v). In the first part, we review the
main families of probabilistic graphical models from the literature, from the most
common (directed, undirected) to the most advanced ones (chained, mixed etc.).
Then we study particularly the problem of learning the structure of directed graphs
(Bayesian networks), and we propose a new hybrid structure learning method, H2PC
(Hybrid Hybrid Parents and Children), which combines a constraint-based approach
(statistical independence tests) with a score-based approach (posterior probability of
the structure).

In the second part, we address the multi-label classification problem, which aims
at assigning a set of categories (binary vector y P (0, 1)m) to a given object (vector
x P R

d). In this context, probabilistic graphical models provide convenient means of
encoding p(y|x), particularly for the purpose of minimizing general loss functions.
We review the main approaches based on PGMs for multi-label classification (Proba-
bilistic Classifier Chain, Conditional Dependency Network, Bayesian Network Classifier,
Conditional Random Field, Sum-Product Network), and propose a generic approach
inspired from constraint-based structure learning methods to identify the unique
partition of the label set into irreducible label factors (ILFs), that is, the irreducible
factorization of p(y|x) into disjoint marginal distributions. We establish several
theoretical results to characterize the ILFs based on the compositional graphoid
axioms, and obtain three generic procedures under various assumptions about the
conditional independence properties of the joint distribution p(x, y). Our conclu-
sions are supported by carefully designed multi-label classification experiments,
under the F-loss and the zero-one loss functions.
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Introduction

A probabilistic graphical model (PGM) allows for the compact representation of a
multivariate probability distribution p(v) by exploiting the independence structure
between the variables, encoded in the form of a graph.

The first part of this thesis is dedicated to the problem of PGM structure learning,
with a comprehensive review of the main PGM families present in the literature,
and a narrow focus on the Bayesian network structure learning problem. This part
culminates with a new hybrid algorithm for BN structure learning, the so-called
Hybrid Hybrid Parents and Children (H2PC) algorithm, [GAE12; GAE14].

The second part of this thesis is dedicated to the problem multi-label classification
(MLC), a natural application for probabilistic graphical models. We will discuss the
main challenges of MLC, and review the main approaches proposed so far. Finally,
we will present our generic approach based on the concept of Irreducible Label Factors
(ILFs), accompanied by a series of theoretical and empirical results [GAE15; GA16a;
GA16b].

This manuscript is intended to be self-contained, therefore advised readers may skip
the preliminary materials in Chapter 1. A confident reader may also skip Chapters 2
and 4, which respectively present a comprehensive review of PGM families and MLC
approaches. Personal contributions are contained within Chapters 3 and 5.

In Chapter 1 we introduce some basic preliminary concepts from probability theory
and graph theory, such as independence relations, independence models, indepen-
dence properties, and basic graph properties.

In Chapter 2 we present a comprehensive review of the main PGM families present
in the literature, from the most common (directed, undirected) to the most advanced
ones (chained, mixed etc.), with some discussions about their inherent limitations.
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In Chapter 3 we introduce the specific problem of Bayesian network structure
learning, review the main approaches proposed so far (score-based, constraint-based,
hybrid), and present a new hybrid approach, MMHC, which improves over the
state-of-the-art H2PC algorithm.

In Chapter 4 we present a comprehensive review of the MLC problem, its combina-
torial challenges, and the main PGM approaches discussed so far in the literature
(Probabilistic Classifier Chain, Conditional Dependency Network, Bayesian Network
Classifier, Conditional Random Field, Sum-Product Network).

In Chapter 5 we propose a generic approach to help solving the MLC problem ef-
ficiently under any loss function, based on the concept of Irreducible Label Factors
(ILFs). We present a series of theoretical results to identify the ILF partition of a
multivariate conditional distribution, p(y|x), by adopting a constraint-based struc-
ture learning approach. Finally we demonstrate empirically the usefulness of our
approach for multi-label classification under the subset zero-one loss and the F -loss
functions.

2 Introduction



1Background and notation

„Probability theory is nothing but common sense
reduced to calculation.

— Pierre-Simon Laplace
1812

In this chapter we will introduce some important concepts and notations from
probability theory and graph theory, which will be heavily used in the remainder of
this work. Most of the material presented here can be found in the very good book
from Koller and Friedman [KF09], which covers many aspects in much more detail.
Another very accurate resource on probabilistic independence models is the book
from Studeny [Stu05].

1.1 Probability theory

The probability of an event is intuitively defined as: how much do I believe this
event will happen? Such a question is very subjective, as it implicitly refers to the
future, to the unknown, and to our degree of uncertainty about the world. To give a
more formal definition of the notion of probability, we will introduce a mathematical
framework called probability theory.

1.1.1 Probability spaces

To reason about uncertainty, we introduce first the set of all elementary events, also
called the state space or the universeuniverse , denoted Ω. The universe may include all
the possible states of the world, which would allow us to reason about everything.
However, in that case Ω would be infinitely bulky and tedious to handle. To make
reasoning easier, we usually restrict ourselves to a smaller system of interest. Suppose
our state space consists in the possible outcomes of a six-sided die, then the universe
is Ω = {1, 2, 3, 4, 5, 6}. An eventevent E is a set of states, including the empty event ∅, the
elementary events which correspond to a unique state, or any combination of them.
Equivalently, we say that an event is a sub-space of the universe, i.e. E Ď Ω. The set
of all possible events is then called the event spaceevent space , denoted S.
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Probability theory requires that the event space satisfies three basic properties:

• S contains the empty event ∅, and the trivial event Ω.
• S is closed under union. That is, if α, β P S, then so is α Y β.
• S is closed under complementation. That is, if α P S, then so is Ω \ α.

The requirement that the event space is closed under union (Y) and complementa-
tion implies that it is also closed under other Boolean operations, such as intersection
(X) and set difference (\).

We can now introduce P , a function defined over S which assigns to each event
a certain value, the probability of that event. This value P (E) gives a quantified
answer to the question: how much is it plausible that, if I observe the universe, it
will be in one of the states in E? By definition, P is a positive real-valued function,
normalized over Ω.

Def. 1.1
probability

distribution

A probability distribution P defined over (Ω, S) is a mapping from events S to real
values that satisfies the following conditions:

1. The probability of an event is positive: P (E) ≥ 0, ∀E P S.
2. The probability of the whole universe is one: P (Ω) = 1.
3. Any pair of disjoint events α and β satisfies P (α Y β) = P (α) + P (β).

The third axiom, also known as the additive rule, states that the probability that
one of two mutually disjoint events will occur is the sum of the probabilities of each
event. By definition, the elementary events (denoted e) are mutually exclusive, and
the probability of any event E decomposes as

P (E) =
∑
ePE

P (e), ∀E P S.

The second and third axioms have many others implications. Of particular interest
are P (∅) = 0 (where ∅ denotes the empty set of states, or the null event), and
P (α Y β) = P (α) + P (β) − P (α X β).

Take again the example of a six-sided die. With a balanced die, the probability of
obtaining an odd outcome after a roll is given by

P ({1, 3, 5}) = 1
6 + 1

6 + 1
6 = 1

2 .
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Conditional probability

A conditional probability is the probability of an event, given some evidence. Condi-
tional probabilities arise naturally when we reason about the world, especially if we
have to make a decision. We usually want to take into account as many information
we have, to adjust our belief in what will happen in the future and ensure we make
the less risky choice. Suppose you are playing poker, then typically you want to
know the probability of your opponent having a strong hand, for example a pair of
Aces. If there is an Ace revealed on the table, then it is quite likely that he has one of
the three remaining Aces in his hand. However, if you also have an Ace in your hand,
then only two Aces are remaining, and it is less likely that one of them is in your
opponent’s hand. Of course, a good poker player will use a lot more information
to adjust the probability of the different hands his opponent may have, such as
his behaviour, the look on his face, and so on. In the end, a good part of playing
poker resides in computing conditional probabilities, although in an informal (or
unconscious) way. In a formal probabilistic framework, conditional probability is
defined as follows

Def. 1.2
conditional
probability

The conditional probability of an event α given an event β is:

P (α|β) = P (α X β)
P (β) .

When P (β) = 0, P (α|β) is not defined1.

If we go back to our die example, we may be interested in the probability of
obtaining a 3, given that I already known that the outcome of the roll is an odd
number (suppose someone looked at it and told you so). This conditional probability
is given by

P ({3}|{1, 3, 5}) = 1/6
1/2 = 1

3 .

Chain rule and Bayes’ rule

From the definition of conditional probability, we immediately have that P (α X β) =
P (β)P (α|β). By extension we obtain the so-called chain rulechain rule of conditional proba-
bilities. That is, for any number of events α1, . . . , αn we can write

P (α1 X . . . X αn) = P (α1)P (α2|α1) . . . P (αn|α1 X . . . X αn−1).

1Note that conditional independence when conditioning on events of probability zero is possible
within the context of full conditional probabilities. While not discussed here, interested readers are
pointed to Cozman [Coz13].

1.1 Probability theory 5



In other words, the probability of a combination of events can be expressed in terms
of the probability of the first, the probability of the second given the first, and so on.
It is important to notice that this holds for any ordering of the events.

Another immediate consequence of the conditional probability definition is the
following, known as Bayes’ ruleBayes’ rule :

P (α|β) = P (α)P (β|α)
P (β) .

Bayes’ rule is important in that it allows us to compute the conditional probability
P (α|β) from the "inverse" conditional probability P (β|α). A lot of approaches to
statistics are derived from this simple rule, and form the so-called field of Bayesian
statistics. The term Bayesian is often used in opposition to the frequentist statistics,
which refer to a somewhat more classical view of statistics. However, the difference
between the two approaches is merely philosophical, and the practical methods
employed in both fields often end up doing quite the same thing [GM91; GS98].

Independence between events

The notions of independence and conditional independence constitute the corner-
stone of probabilistic graphical models. It is essential to clearly understand them
before to dig into such models. As previously mentioned, adjusting the probability
of an event, P (α), by taking into account the fact that another event is true, i.e.
P (α|β), is crucial for decision making. However, it may be that the event β does not
change the probability of α, in which case we say that α is independent of β.

Def. 1.3
indep. of

events

Two events α and β are independent, denoted α ⊥⊥ β, when the following holds:

P (α X β) = P (α)P (β).

It follows immediately from the definition that both the null event ∅ and the sure
event Ω are independent of any event E. An alternative definition is P (α) = P (α|β)
when P (β) > 0.

Note that two disjoint events with non-zero probability are always dependent.
The converse, however, is not true. For example, if we go back to our single die
example, the probability of obtaining an odd number does not change if we know
that that number is at most equal to 4, i.e. P ({1, 3}) = P ({1, 3, 5})P ({1, 2, 3, 4}).
Or, equivalently P ({1, 3, 5}) = P ({1, 3, 5}|{1, 2, 3, 4}).
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The definition of conditional independence is strictly the same, except for the
addition of an evidence term, that is, P (α X β|γ) = P (α|γ)P (β|γ). However, such a
definition is problematic when P (γ) = 0, as in that case P (α|γ) is not defined. We
follow Waal [Waa09] who uses a more general definition, which is strictly equivalent
when P (γ) > 0.

Def. 1.4
conditional

indep. of
events

Two events α and β are conditionally independent given a third event γ, denoted
α ⊥⊥ β | γ, when the following holds:

P (α X β X γ)P (γ) = P (α X γ)P (β X γ).

Again, an alternative definition is P (α|γ) = P (α|β X γ).

It is important to understand that conditional independence does not imply indepen-
dence, nor independence does imply conditional independence. This will become
clear in the next section with Example 1.1.

1.1.2 Random variables

We may now introduce the concept of random variable. In our die example, we
may assign a random variable to the outcome of the die, denoted with a capital
letter X. The domain of the random variable, i.e. the specific set of all the possible
outcomes, is then denoted by a calligraphic letter X = {1, 2, 3, 4, 5, 6}. The outcome
of a random variable is denoted with a lowercase letter, i.e. x P X . Because here X

takes values within a finite set, we say that it is a discrete random variable. In that
case we can introduce a probability mass functionprob. mass

function
, pX(x), which maps every value

of X to the probability of the event X = x, i.e. X takes the particular value x:

pX(x) = P (X = x).

Each possible value for X being mutually exclusive, we can consider each event
X = x as an elementary event of the universe Ω = X . Then, from the third axiom
we can compute the probability of any event E Ď Ω by summing up over pX(x):

P (E) =
∑
xPE

pX(x), ∀E Ď X .

For the sake of simplicity, most of the time we will consider discrete random variables.
However, all the properties which we describe hereinafter apply to continuous
random variables as well, by replacing the summation

∑
with an integration

∫
.
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Suppose that X corresponds to the lifetime of an electric bulb, then it can take any
positive real value, i.e. X = R≥0. The set of all possible events being infinite, the
probability of a particular elementary event is necessarily P (X = x) = 0. It makes no
sense to consider a probability mass function in that case. Instead, we usually employ
a probability density functionprob.

density
function

, pX(x), which is a non-negative Lebesgue-integrable
function corresponding to:

pX(x) = dP (X ≤ x)
dx

.

Because of that property, we can use the third axiom to compute the probability of
any event E by summing up (integrating) over pX(x):

P (E) =
∫

xPE
pX(x)dx, ∀E Ď X .

Note that, because a density function corresponds to a derivative, in the continuous
case it is very likely that pX(x) takes values greater than 1.

In the end, any probability mass or density function pX(x) defined over the state
space X characterizes a probability distribution P defined over the corresponding
event space. Therefore, in the remainder of this work we allow ourselves to use the
term probability distribution, or simply distribution, when we refer to a mass or a
density function.

Multivariate random variables

Suppose now that our universe is the outcome of two dice, then it can take 6 × 6
different states, denoted Ω = {(1, 1), (1, 2), . . . , (6, 5), (6, 6)}. It makes sense to
consider the universe as a space in two dimensions, each one corresponding to the
outcome of one of the dice. In that case we will use two random variables X and
Y to represent the value of each die, and we will introduce a multivariate random
variable denoted by a bold capital letter, U = {X, Y }. Note that here we employed
the letter U for universe, because our multivariate random variable characterizes
the whole state space, Ω = X × Y. An elementary event is then denoted by a bold
lowercase letter, u = (x, y), which is a vector in the state space of the random
variable, a.k.a. a sample point.
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p(x)

p(y)

X
Y

p

Fig. 1.1. Marginalization illustration.

Joint and marginal distributions

A joint probability distribution, like pXY (x, y), denotes a probability distribution
defined over a multi-dimensional space. A marginal distribution, like pX(x), denotes
a probability distribution defined over a reduced number of dimensions, relatively to
a joint distribution. To derive a marginal distribution from a joint distribution, we
employ the marginalization rulemarginaliza-

tion
rule

:

pX(x) =
∑
yPY

pXY (x, y).

When the domain of a probability distribution is clear from the context, we will omit
the under-script to gain in clarity, as in p(x). Another shorthand in notation is that∑

x refers to
∑

xPX , a sum over all possible values that X can take. For example, the
marginalization rule becomes: p(x) = ∑

y p(x, y).

Figure 1.1 provides a visual illustration of marginalization in a two-dimensional
space. In this example X and Y are two continuous random variables, and their joint
distribution p(x, y) is defined as a mixture of two multivariate Gaussian distributions.
To marginalize out some random variables (say X), we project the distribution
defined over a multi-dimensional space (X × Y) onto a lower-dimensional space
(X ), by summing up over the remaining dimensions (Y).

Conditional distributions

By extension to conditional probabilities, a conditional distribution is a probability
distribution re-defined over a sub-space of the universe, where the evidence is

1.1 Probability theory 9
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b
cd

p(x|y P [a, b])

p(x|y P [c, d])

X Y

p

Fig. 1.2. Conditioning illustration.

true. Any conditional distribution can be derived from a marginal and a joint
distribution:

p(x|y) = p(x, y)
p(y) .

Figure 1.2 provides a visual illustration of conditional distributions in a two-dimensional
space. It consists in restricting the domain of p to a particular space where the evi-
dence is true, such as the blue area where y P [a, b], and re-normalizing it accordingly.
Then, a proper marginalization can be applied to obtain conditional marginal distri-
butions, like p(x|y P [a, b]).

Independence between random variables

The notion of independence applies to random variables as well. We give right away
the definition of conditional independence for multivariate random variables2.

Def. 1.5
conditional

indep.

Two random variables X and Y are independent given a third random variable Z,
denoted X ⊥⊥ Y | Z, when the following holds for all (x, y, z) P X × Y × Z:

p(x, y, z)p(z) = p(x, z)p(y, z).

This definition includes univariate random variables as a particular case, for example
X = {X}. In that case we may write X ⊥⊥ Y | Z as a shorthand for {X} ⊥⊥ Y | Z to
alleviate our notation.

2Note that most definitions from the literature use the condition p(x, y|z) = p(x|z)p(y|z) or
p(x|y, z) = p(x|z), however we prefer the definition below which does not rely on any posi-
tivity condition, i.e. p(z) > 0 or p(y, z) > 0.
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X
Y

p

(a) X and Y are dependent.

X
Y

p

(b) X and Y are independent.

Fig. 1.3. Independence between random variables in a two-dimensional space. The joint distributions
in (a) and (b) share the same marginal distributions, however only the distribution in (b)
factorizes according to its marginals, i.e. p(x, y) = p(x)p(y).

Another random variable of interest is the empty set of variables. By definition, the
empty random variable X = ∅ (not to be confused with the empty event E = ∅)
is constant, which implies that P (X = x) = 1 for every x P X . If we set Z = ∅
the evidence term above vanishes and we obtain the definition of unconditional
independence, i.e. X ⊥⊥ Y ⇐⇒ X ⊥⊥ Y | ∅. Another implication, called the trivial
independence, is that X ⊥⊥ ∅ | Ztrivial indep. is always true.

Figure 1.3 provides a visual illustration of independence between two continuous
random variables.

Ex. 1.1 Suppose that we observe a car parking, and that for each car we have access to three
informationcar parking

example
: the fuel level indicator, the battery level indicator, and whether the engine

starts when we turn the ignition key. Let us define three binary random variables: X

which equals 0 if the car is out of fuel, 1 if not; Y which equals 0 if the car is out of
battery, 1 if not; and Z which equals 1 if the engine starts, 0 if not. In this example
we will consider the full joint probability distribution given in Table 1.1. The fuel level
of a car does not give any information about its battery level, as shown in Table 1.2,
and we have that X ⊥⊥ Y . However, if we know whether the engine starts or not, the
battery level can give an information about the fuel level, and we have X ⊥
⊥ Y | Z. For
example if the engine does not start when we turn the ignition key, but we have the
information that the car is not out of battery, then the car must probably be out of fuel.
This is shown in Table 1.3.

We may now give an alternative definition of conditional independence between
random variables, which is mathematically more convenient.

Thm. 1.1 X ⊥⊥ Y | Z if and only if there exists two functions f and g such that

p(x, y, z) = f(x, z)g(y, z).
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Tab. 1.1. The joint probability distribution of X, Y and Z in our car parking example, i.e. p(x, y, z).

Y
Z X (battery)

(ignition) (fuel) 0 1

0
0 .06 .23
1 .13 .06

1
0 .00 .01
1 .01 .50

Tab. 1.2. The joint and marginal probability distributions of X and Y in our car parking example, i.e.
p(x, y), p(x) and p(y).

Y
(battery)
0 1

X 0 .06 .24 .30
(fuel) 1 .14 .56 .70

.20 .80

Tab. 1.3. The joint and marginal conditional probability distributions of X and Y given Z in our car
parking example, i.e. p(x, y|z), p(x|z) and p(y|z). Exact probabilities are rounded for clarity.

(a)

Z Y
(ignition) (battery)

0 0 1

X 0 .125 .479 .604
(fuel) 1 .271 .125 .396

.396 .604

(b)

Z Y
(ignition) (battery)

1 0 1

X 0 .000 .019 .019
(fuel) 1 .019 .962 .981

.019 .981
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Proof. The first implication X ⊥⊥ Y | Z =⇒ ∃(f, g) holds trivially. From Defini-
tion 1.5, we readily obtain p(x, y, z) = f(x, z)g(y, z), with f(x, z) = p(x, z) and
g(y, z) = p(y|z) when p(z) > 0, any positive value otherwise. To show the converse,
let us express p(x, y, z)p(z) and p(x, z)p(y, z) in terms of the f and g functions. We
obtain

p(x, y, z)p(z) = f(x, z)g(y, z)
∑
x′,y′

f(x′, z)g(y′, z),

as well as

p(x, z)p(y, z) = f(x, z)

⎛
⎝∑

y′
g(y′, z)

⎞
⎠ g(y, z)

(∑
x′

f(x′, z)
)

,

which is equivalent.

1.1.3 Independence models

Suppose we are given some conditional (in)dependence statements between random
variables, then it would be very convenient if we could derive other (in)dependencies
analytically. As we will see, reasoning about conditional independence will prove very
useful to learn the structure of probabilistic graphical models from data efficiently,
by means of statistical independence tests. To this end, we introduce the notion of
independence model, along with an axiomatic characterization of the properties of
conditional independence which will provide a formal deductive system.

Def. 1.6
indep. model

An independence model I over a set V consists in a set of triples 〈X, Y | Z〉, called
independence relations, where X, Y and Z are disjoint subsets of V and 〈X, ∅ | Z〉 and
〈∅, Y | Z〉 always belong to I.

Consider two independence models I1 and I2, defined over the same set V. We say
that I1 is an independence mapI-map for I2 (I-map for short), if all the independence
relations in I1 hold in a I2 (I1 Ď I2). Equivalently, we say that I1 is a dependence
mapD-map for I2 (D-map), when all the dependence relations in I1 hold in a I2 (I2 Ď I1).
Finally, we say that I1 is a perfect mapP-map for I2 (P-map), when I1 is both an I-map and
a D-map for I2 (I1 = I2).

Def. 1.7
faithfulness

A probability distribution p defined over V is said faithful to an independence model I

when all and only the independence relations in I hold in p, that is,

〈X, Y | Z〉 P I ⇐⇒ X ⊥⊥ Y | Z w.r.t. p.

An independence model I is said probabilistic, if there exists a probability distribution
p that is faithful to it.
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Conditional independence properties

The study of conditional independence properties goes back to the late seventies with
Dawid and Spohn. In seminal theoretical developments, Dawid [Daw79; Daw80]
proposes a first axiomatization of conditional independence properties, which unifies
a variety of topics within probability and statistics under the same framework. At
the same period, Spohn [Spo80] derives similar properties in his work on causal
independence. These properties were then studied in great detail by Pearl and
colleagues on their work on probabilistic graphical models, work that is presented in
[Pea89].

Consider four mutually disjoint random variables, W, X, Y and Z. We first intro-
duce the following properties, which hold in any probability distribution (∧ and ∨
respectively denote the logical AND and OR operators):

• Symmetry: 〈X, Y | Z〉 ⇐⇒ 〈Y, X | Z〉.

• Decomposition: 〈X, Y Y W | Z〉 =⇒ 〈X, Y | Z〉.

• Weak Union: 〈X, Y Y W | Z〉 =⇒ 〈X, Y | Z Y W〉.

• Contraction: 〈X, Y | Z〉 ∧ 〈X, W | Z Y Y〉 =⇒ 〈X, Y Y W | Z〉.

Any independence model that respects these four properties is called a semi-graphoid
semi-

graphoid
[PV87].

A fifth property holds in strictly positive distributions, that is when p > 0:

• Intersection: 〈X, Y | Z Y W〉 ∧ 〈X, W | Z Y Y〉 =⇒ 〈X, Y Y W | Z〉.

Any independence model that respects these five properties is called a graphoidgraphoid . The
term "graphoid" comes from Pearl and Paz [PP86], who noticed that these properties
had striking similarities with vertex separation in graphs.

Finally, a sixth property will be of particular interest in our work:

• Composition: 〈X, Y | Z〉 ∧ 〈X, W | Z〉 =⇒ 〈X, Y Y W | Z〉.

Any independence model that respects these six properties is called a compositional
graphoidcomposi-

tional
graphoid

[SL14]. Similarly, any semi-graphoid which respects the composition
property is called a compositional semi-graphoid. The composition property holds
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in particular probability distributions, such as the regular multivariate Gaussian
distribution, or, say, the symmetric binary distributions used in [WMC09].

The characterization problem

As stated previously, any probabilistic independence model satisfies the semi-graphoid
properties. Because of that, the semi-graphoid properties provide a necessary condi-
tion to characterize probabilistic independence models. It is then possible to detect
contradictory conditional independence relations, by checking if they respect the
semi-graphoid properties. For example, different experts of the same domain may
give different assumptions of conditional independence, which may not correspond
together to any probability distribution.

The question of the converse implication arises naturally. Do the semi-graphoid
properties provide a sufficient condition to characterize a probabilistic independence
model?

A famous conjecture from Pearl [Pea89], known as Pearl’s completeness conjecture,
was that the graphoid axioms were a sufficient condition to characterize probabilistic
independence models. Unfortunately, a counter-example was given by Studeny
[Stu89], who found a set of conditional independence relations that respects the
graphoid axioms, yet does not correspond to any faithful probability distribution. It
consists in the following relations, plus the symmetric and trivial ones:

〈A, B | {C, D}〉 ∧ 〈C, D | A〉 ∧ 〈C, D | B〉 ∧ 〈A, B | ∅〉.

This counter-example suffices to disprove the conjecture. Moreover, we can see that
this example satisfies also the semi-graphoid, the compositional graphoid, and the
compositional semi-graphoid axioms, so neither of these sets provides a sufficient
condition to characterize probabilistic independence models.

Afterwards, Studeny [Stu92] showed that, in the general case, there exists no finite
set of conditional independence properties that is both a sufficient and necessary
condition to characterize probabilistic independence models. Or, equivalently, prob-
abilistic independence models have no finite complete axiomatic characterization.
Later on, Sullivant [Sul09] showed that, even in the restricted case of probabilistic
independence models over regular Gaussian distributions, no such characterization
exists.
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independence
models

p p > 0

semi-graphoids

graphoids

Fig. 1.4. Overlapping between different classes of independence models. Here p denotes models for
which there exists a faithful probability distribution (probabilistic independence models),
while p > 0 denotes models for which there exists a faithful strictly positive probability
distribution. The compositional classes are omitted for clarity.

As we will see in the Chapter 2, probabilistic graphical models represent indepen-
dence models in the form of a graph. In the next section we introduce some basic
concepts and notations from graph theory which are common to graphical models.

1.2 Graph theory

The following definitions are adapted from [SL14; Peñ14]. Formally, a graph G is
defined as an ordered pair of sets (V, E). The first set, V = {V1, . . . , Vn}, represents
the nodes

node

(or vertices) of the graph, while the second set E represents its edgesedge . An
edge always associates two nodes (not necessarily distinct), called its endpoints.

Notice that under this notation our graphs are labeled, that is, every node is con-
sidered as a different object. Hence, for example, graph A − B − C is not equal to
B − A − C.

A subgraphsubgraph of G = (V, E) is any graph G′ = (V′, E ′) such that V′ Ď V and E ′ Ď E .
An induced subgraph is any such subgraph that contains all and only the edges that
are present in G between pairs of nodes in V′.

1.2.1 Connectivity, paths, walks, cycles

Two nodes Vi and Vj which are endpoints of the same edge are called adjacent. The
adjacents of a set of nodes X in G is the set ADG

X = {V1|V1 is adjacent to V2 in G, V1 
P
X and V2 P X}. A cliqueclique is a set of nodes such that each node is adjacent to every
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A

B C D

(a) Undirected.

A

B C D

(b) Directed.

A

B C D

(c) Mixed.

Fig. 1.5. Three simple graphs.

other node in the set. A maximal clique is a clique that does not accept any other
clique as a proper superset.

A walkwalk between two nodes V1 and Vk is a sequence of nodes in the form V1, . . . , Vk,
k ≥ 1, such that Vi is adjacent to Vi+1 for all 1 ≤ i < k. Note that nodes in a walk
are not necessarily distinct, i.e. the same node may appear several times. A walk
with only distinct nodes is called a pathpath . A walk with only distinct nodes except
V1 = Vk is called a cyclecycle . Within a walk (resp. path) V1, . . . , Vk, a subwalk (resp.
subpath) is any sequence Vi, . . . , Vj , 1 ≤ i ≤ j ≤ k, whose consecutive members
appear consecutively in the walk.

Two nodes that accept a path between them are said connected. A connected set
connected

set

is
a set of nodes C such that there is a path between each pair of nodes in C with
all intermediate nodes in C. A maximal connected set is a connected that does not
accept any other connected set as a proper superset.

1.2.2 Classes of graphs

A loop is an edge with the same endpoints, and multiple edges are edges with the
same pair of endpoints. A loopless graphloopless is a graph that has no loops. A simple graph

simple is a graph that has neither loops nor multiple edges.

An empty graph is a graph that has no edges. A complete graphcomplete is a graph that has
only one maximal clique. A connected graphconnected is a graph that has only one maximal
connected set. A chordal graphchordal is a graph in which every cycle with more than 3
distinct nodes admits a smaller cycle as a proper subset.

Classical graphical models are restricted to simple graphs that contain only one type
of edge: undirected, in the form X − Y , or directed, in the form X ��� Y . Several
attempts have been made to unify and increase the expressiveness of these models,
by mixing directed and undirected edges, and by introducing new types of edges
such as bi-directed ones in the form X ���� Y . Figure 1.5 provides an illustration of
such graphs.
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2Probabilistic graphical models

„Probability does not exist.

— Bruno De Finetti
1974

Probabilistic graphical models belong the the family of probabilistic models, in the
sense that they are able to represent a probability distribution p defined over a set of
random variables. A PGM always consists in a set of parameters Θ and a graphical
structure G. The graphical structure encodes a set of conditional independence
relations between nodes in the graph by the presence and absence of edges, and
induces an independence model denoted I(G). By definition, p satisfies every
independence relations in I(G), that is,

〈X, Y | Z〉 P I(G) =⇒ X ⊥⊥ Y | Z w.r.t. p.

Equivalently, we say that I(G) is an I-map for p. Note that the reverse implication is
not required, that is, I(G) is not necessarily a D-map for p.

Because p supports the conditional independence relations encoded in the graph, an
interesting property of PGMs is that p factorizes according to G. Once this graphical
structure is known, the factorization supposedly makes the learning process easier
(i.e. choose the best parameters Θ to estimate p from a finite number of samples),
as well as the inference process (i.e. answer probabilistic queries from the model).
When the graphical structure is unknown, it may also be learned from data samples.
The whole process of learning a PGM that estimates a probability distribution p from
a finite number of samples is usually split into two distinct problems, namely the
structure learning problem (learn G), and the parameter learning problem (learn
Θ).

Probabilistic models, among which are PGMs, may be further divided into two
categories: generative modelsgenerative

vs discrimi-
native

, which encode a probability distribution p(v) over a
set of random variables V, and discriminative models, which encode a conditional
probability distribution p(y|x) over two disjoint sets of random variables X and Y.
This chapter will focus on the former family of generative models, as discriminative
models may be seen as a particular case of these.
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2.1 Classical graphical models

We will now review the most popular models based on undirected graphs (Markov
networks) and acyclic directed graphs (Bayesian networks). We will extend the
discussion to advanced graphical models in the next section. Note that the literature
abounds with different families of graphical models, and the list we discuss here is
by far non-exhaustive.

2.1.1 Undirected graphs

The most popular probabilistic models based on undirected graphs are the Markov
networks (MNs), also called Markov random fields, which emerged from different
fields in the literature. Historically, the theory of Markov fields traces back to the
Ising model [Isi25] from statistical physics, where undirected graphs were used to
model geometric arrangements in space. Several types of Markov conditions were
later introduced (see Lauritzen [Lau96] for an overview) in order to associate these
graphs with independence models.

Undirected graphs as probabilistic models

Def. 2.1
Markov
network

A Markov network consists in a set of random variables V = {V1, . . . , Vn}, a simple
undirected graph G = (V, E), and a set of parameters Θ. Together, G and Θ define a
probability distribution p over V which factorizes as

p(v) =
∏

CiPClG

φi(ci),

where ClG is the set of all cliques in G.

Each φi function is called a factor, a potential function, or a clique potential. Note
that, without loss of generality, the factorization of p(v) may also be defined over
the maximal cliques in G.

Ex. 2.1 Consider the undirected graphs in Figure 2.1. From the above definition, the correspond-
ing factorizations over the maximal cliques are p(v) = φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a)
in (a), and p(v) = φ1(a, b, d)φ2(d, b, c) in (b). Suppose that A, B, C and D are 4
binary variables, then Tables 2.1 and 2.2 respectively define valid clique potentials
for each of these Markov network structures. These potentials are valid because their
product defines a valid probability distribution, that is,

∑
a,b,c,d p(a, b, c, d) = 1. Note

however that individual clique potentials do not necessarily normalize to 1, and there-
fore do not necessarily correspond to marginal or conditional probability distributions.
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Because of this, potential functions in Markov network are not subject to an intuitive
probabilistic interpretation, and one must always go through a factorization to obtain
proper probability measures.

Undirected graphs as independence models

Every undirected graph G induces a formal independence model I(G) over V, by
means of a graphical separation criterion, called u-separation.

Def. 2.2
UG ind.
model

Given an undirected graph G, I(G) is the independence model such that a disjoint
triplet 〈X, Y | Z〉 belongs to I(G) iff Z u-separates X and Y in G, that is, every path
between a node in X and a node in Y contains a node in Z.

Note that the trivial relations 〈X, ∅ | Z〉 and 〈∅, Y | Z〉 are included in I(G). From
the above definition, the two extreme independence models correspond to the empty
graph (without edges), where I(G) contains every possible triplet, and the clique
graph where I(G) contains only trivial relations. Indeed, in undirected graphical
models the addition of edges only creates dependence relations, while their removal
creates independence relations.

Ex. 2.2 Consider again the undirected graphs in Figure 2.1. In (a) the independence model
is 〈{A}, {C} | {D, B}〉 ∧ 〈{D}, {B} | {A, C}〉, while in (b) it reduces to 〈{A}, {C} |
{D, B}〉 by the addition of a single edge.

The next example illustrates u-separation in more complicated cases.

Ex. 2.3 Consider the undirected graph in Figure 2.2. Here the independence model con-
tains 〈{A}, {B} | {C}〉 because every path between A and B contains C, as well
as 〈{A}, {B, F} | {C, E}〉 because every path between A and B or between A and F

contains C. However, the relation 〈{A}, {B, F} | {D, E}〉 is not in I(G) because there
is a path between A and B which contains neither D nor E.

Soundness of Markov networks

A Markov network structure always defines an I-map of the underlying probability
distribution. Consider G an undirected graph over the variables V, and p a probability
distribution over the same set.

Thm. 2.1 I(G) is an I-map for p if p factorizes into a product of potentials over the cliques in G.
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Fig. 2.1. Two undirected graphs (UGs).

Tab. 2.1. A set of clique potentials (i.e. parameters Θ) that define a valid probability distribution
according to the Markov network structure in Figure 2.1a.

(a) φ1(a, b)

B
0 1

A
0 2/3 3/3
1 1/3 1/3

(b) φ2(b, c)

C
0 1

B
0 1/2 2/2
1 1/2 3/2

(c) φ3(c, d)

D
0 1

C
0 3/3 2/3
1 2/3 1/3

(d) φ4(d, a)

A
0 1

D
0 3/10 1/10
1 1/10 2/10

Tab. 2.2. A set of clique potentials (i.e. parameters Θ) that define a valid probability distribution
according to the Markov network structure in Figure 2.1b.

(a) φ1(a, b, d)

B
A D 0 1

0
0 1/8 3/8
1 1/8 1/8

1
0 2/8 1/8
1 2/8 2/8

(b) φ2(b, c, d)

B
C D 0 1

0
0 1/6 4/6
1 1/6 1/6

1
0 1/6 2/6
1 2/6 3/6

A

B C

D

E F

Fig. 2.2. An undirected graph to illustrate u-separation.
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Proof. Let X, Y, Z be any three disjoint subsets of V such that 〈X, Y | Z〉 P I(G).
We start by considering the case where X Y Y Y Z = V. As Z u-separates X and Y,
there are no direct edges between X and Y. Hence, any clique in G is fully contained
either in X Y Z or in Y Y Z. So we may re-write the factorization of p as

p(v) =
∏

i

φi(ci) ·
∏
j

φj(cj),

where i indexes of the set of cliques that are contained in X Y Z, while j indexes
the remaining cliques. As discussed, none of the factors in the first product in-
volves any variable in Y, and none in the second product involves a variable in
X. Hence we can rewrite this product as p(v) = f(x, z)g(y, z). The desired in-
dependence relation follows immediately (Theorem 1.1), that is, X ⊥⊥ Y | Z. In
the case where X Y Y Y Z Ă V, let us to consider the remaining set of variables
W = V \ (X Y Y Y Z) as follows. Necessarily, one can find a partition {W1, W2}
of W such that Z u-separates X Y W1 and Y Y W2 in G. Using our precedent
argument, we have that X Y W1 ⊥⊥ Y Y W2 | Z. Using the decomposition property
(from the semi-graphoid axioms), we obtain the desired result X ⊥⊥ Y | Z.

The converse implication was shown to be true only for strictly positive distributions1.
This result is known as the Hammersley-Clifford’s theorem [HC71].

Thm. 2.2
Hammersley

Clifford

Suppose that p > 0. Then, p factorizes into a product of potentials over the cliques in G
iff I(G) is an I-map for p.

Interestingly, Hammersley and Clifford found the positivity condition p > 0 un-
natural, and postponed their publication in hope of relaxing it. Thereby, they
were preceded by Besag [Bes74] in publishing the theorem. The condition was
shown to be necessary shortly after by Moussouris [Mou74], who provided a simple
counter-example with only 4 variables, which we present below.

Ex. 2.4 Consider 4 binary variables A, B, C, D, and the probability distribution in Table 2.3.
The undirected graph in Figure 2.1a is an I-map for p, because A ⊥⊥ C | {B, D}
and B ⊥⊥ D | {A, C}. However, one may observe that each combination of {A, B},
{B, C}, {C, D} or {D, A} has a positive probability, while some joint combinations
of {A, B, C, D} have zero probabilities. The only way to obtain a zero probability for
a particular joint combination would be to set one of the clique potentials φ1({a, b}),
φ2({b, c}), φ3({c, d}) or φ4({d, a}) to zero, which would immediately result in a zero
probability for the corresponding pairwise combination. Thus, p cannot be encoded as a
product of pairwise potentials.

1Note that, in the discrete case, Geiger et al. [GMS02] give a necessary and sufficient condition that
encompasses the positivity condition from the Hammersley-Clifford’s theorem.
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Tab. 2.3. Moussouris’ counter-example of a probability distribution that satisfies the independence
relations in a grid graph (Figure 2.1) but cannot be encoded as a product of pairwise poten-
tials. Any {a, b, c, d} combination that is not displayed has probability 0. This distribution
does not satisfy the positivity condition.

A B C D p(a, b, c, d)
0 0 0 0 1/8
0 0 0 1 1/8
0 0 1 1 1/8
0 1 1 1 1/8
1 1 1 1 1/8
1 1 1 0 1/8
1 1 0 0 1/8
1 0 0 0 1/8

The Hammersley-Clifford’s theorem has a practical application for Markov network
structure learning. Assuming p > 0, learning a Markov network that estimates p can
be done in two steps: 1) find a structure G that is an I-map for p; and 2) learn clique
potentials φi that express p. Without the positivity condition, it is not guaranteed
that the graph recovered after phase 1) will be able to correctly encode p.

Conditional independence properties of undirected graphs

Any independence model that can be expressed by u-separation over an undirected
graph, i.e. for which there exists an undirected graph G that is a perfect map, is said
UG-faithful. An interesting property of such independence models is that they are
characterized by a finite set of conditional independence properties, as shown by
Pearl and Paz [PP86].

Thm. 2.3 Consider an independence model I defined over V. A necessary and sufficient condition
for I is to be UG-faithful is that it satisfies the following properties:

• Symmetry: 〈X, Y | Z〉 ⇐⇒ 〈Y, X | Z〉.

• Decomposition: 〈X, Y Y W | Z〉 =⇒ 〈X, Y | Z〉.

• Intersection: 〈X, Y | Z Y W〉 ∧ 〈X, W | Z Y Y〉 =⇒ 〈X, Y Y W | Z〉.

• Strong union: 〈X, Y | Z〉 =⇒ 〈X, Y | Z Y W〉.

• Transitivity, ∀W P W: 〈X, Y | Z〉 =⇒ 〈X, W | Z〉 ∨ 〈W, Y | Z〉.
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Note that we can easily derive the weak union, contraction and composition prop-
erties from this set of axioms, and as a consequence independence models based
on undirected graphs are compositional graphoids. First, weak union may be de-
rived as follows: 〈X, Y Y W | Z〉 implies 〈X, Y | Z〉 due to the decomposition
property, which in turn implies 〈X, Y | Z Y W〉 due to the strong union property.
Second, contraction is derived as follows: 〈X, Y | Z Y W〉 ∧ 〈X, W | Z〉 implies
〈X, Y | Z Y W〉 ∧ 〈X, W | Z Y Y〉 due to the strong union, which in turn implies
〈X, Y Y W | Z〉 due to the intersection. Finally, composition is derived as follows:
〈X, Y | Z〉 ∧ 〈X, W | Z〉 implies 〈X, Y | Z Y W〉 ∧ 〈X, W | Z Y Y〉 due to the strong
union, which in turn implies 〈X, Y Y W | Z〉 due to the intersection.

A second important property of undirected graphs is that they always produce a
probabilistic independence model. Indeed, it was shown by Geiger and Pearl [GP90]
that for every independence model I that is UG-faithful, there exists a probability
distribution p that satisfies all and only the independence relations in I. However,
the converse does not necessarily hold, that is, not every probability distribution p

is UG-faithful. Because of the axiomatic characterization given above, all and only
the distributions that satisfy the intersection, the strong union and the transitivity
property are UG-faithful.

Discussion

We will now emphasize some important points and caveats about Markov networks.
First, any probability distribution can be encoded in a Markov network. It suffices
to consider the complete graph G, which does not impose any constraint on the
expression of p, that is, p(v) = φ(v). With a proper parameterization, φ may
encode any probability distribution, even a non-strictly positive one such as in
Example 2.4.

However, it must be kept in mind that the benefit of modeling a probability distribu-
tion with a Markov network comes from the sparseness of structure. The key idea of
probabilistic graphical models is the factorization of p, which makes the learning
and inference problems easier. This factorization comes from the independence
relations encoded in the model, which for Markov networks directly result from
the sparseness of the structure (recall that the absence of an edge only creates
independence relations). The tractability of graphical models is often measured
in terms of the tree-width of the model, which for undirected graphical models is
given by the size of the largest clique, after the graph has been made chordal with
added edges. Another way of assessing the tractability of a model is by measuring
the number of degrees of freedom in its parameterization. Indeed, the more the
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structure of a model imposes restrictions on p, the less free parameters remain to
express p, and the easier will be the learning and inference problems.

Ex. 2.5 Consider 3 binary random variables A, B and C. Their joint distribution can be repre-
sented as a contingency table in 3 dimensions, resulting in 23 parameters. Obviously
one of these parameters is not free, as it can be deduced from the others due to the
normalization

∑
a,b,c p(a, b, c) = 1. Still, we have 23 − 1 = 7 free parameters to express

p. If p supports some independence relations, such as A ⊥⊥ C | B, then it factorizes as
p(a, b, c) = p(a, b)p(c|b), in which case the number of free parameters is reduced to 5
(22 − 1 for p(a, b) plus 2 × (21 − 1) for p(c|b)). This corresponds to the undirected graph
A − B − C with p(a, b, c) = φ1(a, b)φ2(b, c). In the extreme case where every single
variable is independent of the others, we have p(a, b, c) = p(a)p(b)p(c), in which case
the number of free parameters is reduced to 3. This corresponds to the empty graph
A B C (without edges), with p(a, b, c) = φ1(a)φ2(b)φ3(c).

To summarize, for a graphical model to be interesting it should include as many
of the independence relations in p as possible. However, the model must remain
an I-map of p, that is, all the independence relations encoded in the structure must
hold in p. In the case where p is UG-faithful, then there exists an "optimal" Markov
network in some sense, that is, an undirected graphical model that perfectly encodes
all and only the independence relations in p. However, and this is the main flaw of
undirected graphical models, not every probability distribution is UG-faithful. That
is, there are some probability distributions for which it is impossible to include all
the independence relations in an undirected graph without violating a dependence
relation as well.

Ex. 2.6 Consider again the car parking example from Example 1.1. It can be verified that the
only non-trivial independence relation is X ⊥⊥ Y . Then, p factorizes as p(x, y, z) =
p(x)p(y)p(z|x, y), which corresponds to 6 free parameters. Unfortunately, this fac-
torization can not be exploited within an undirected graphical model. Indeed, any
undirected model that encodes the relation 〈X, Y | ∅〉 necessarily implies 〈X, Y | Z〉 as
well, due to the strong union property (Theorem 2.3). As a result, the only undirected
graph that is an I-map for p is the complete graph, which necessarily results in 7 free
parameters. In such a situation Markov networks do not appear to be well suited models
to encode p.

In the next section we will introduce directed acyclic graphical models, which have
admittedly a higher expressive power that undirected models. However, directed
acyclic models do not subsume undirected ones, as they suffer from different flaws
and in some cases an undirected independence model is still better suited than a
directed one.
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Fig. 2.3. A path diagram from Wright [Wri20], showing how the fur pattern of the litter guinea pigs
is determined by various genetic and environmental factors.

2.1.2 Directed acyclic graphs

Within classical probabilistic graphical models, the directed counterpart of Markov
networks are the Bayesian networks (BNs), which rely on directed acyclic graphs
(DAGs). The modern definition of Bayesian networks as probabilistic independence
models originates from the mid-1980s in a series of papers from Pearl and his
colleagues [Pea85; VP88; GP88; GVP89; GVP90], work that is presented in great
detail in Pearl [Pea89]. However, the idea of using directed acyclic graphs to encode
general probability distributions goes back to the mid-1970s with influence diagrams
in the context of decision analysis [HM81]. Furthermore, a first use of directed
graphs to represent relations between random variables can be traced back to the
1920s with Wright [Wri20; Wri34] who introduced the notion of path diagrams in
the context of genetics analysis (Figure 2.3).

Before talking about Bayesian networks, we must introduce some notions from graph
theory that are specific to directed graphs. Recall that a directed graph G = (V, E)
contains only edges in the form Vi ��� Vj . The parentsparent of a set of nodes X is the set
PAG

X = {V1|V1 ��� V2 is in G, V1 
P X and V2 P X}. Likewise, the childrenchild of X is the
set CHG

X = {V1|V1 ��� V2 is in G, V1 
P X and V2 P X}. When clear from the context
we may omit the superscript and just write PAX and CHX.

A directed walk from V1 to Vk is a walk V1, . . . , Vk such that Vi P PAVi+1 for all 1 ≤ i <

k. Likewise, the definition of directed path and directed cycle follows. The ancestors
ancestor of X is the set ANX = {V1|V1, . . . , Vk is a directed path in G, V1 
P X and Vk P X}.

Likewise, the descendantsdescendant of X is the set DEX = {V1|Vk, . . . , V1 is a directed path in G, V1 
P
X and Vk P X}, and the non-descendants of X is the set NDX = V \ (X Y DEX).
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A directed acyclic graphdirected
acyclic
graph

(DAG for short) is a directed graph that contains no directed
cycle. An equivalent characterization is a directed graph in which no node is both
an ancestor and a descendant of the same node, that is, ANV X DEV = ∅ for every
V P V. Some authors point that the phrase directed acyclic graph is ambiguous, and
prefer to refer to acyclic directed graphs (ADG), or acyclic digraphs [Stu05, p. 46].
In this work we will follow the common practice in the field of Bayesian networks
and refer to DAGs.

Directed acyclic graphs as probabilistic model

Def. 2.3
Bayesian
network

A Bayesian network consists in a set of random variables V = {V1, . . . , Vn}, a simple
directed acyclic graph G = (V, E), and a set of parameters Θ. Together, G and Θ define
a probability distribution p over V which factorizes as

p(v) =
∏

ViPV
p(vi|paVi

).

This factorization according to a DAG is called recursive factorization, or chain rule for
BNschain rule

for BNs
. Each of the factors p(vi|paVi

) can be seen as a potential function φi(vi, paVi
),

similarly to a clique potential in Markov networks. However, in Bayesian networks
each factor must define a valid conditional probability distribution for Vi, and thus
respects the normalization constraint

∑
vi

φi(vi, paVi
) = 1.

Ex. 2.7 Consider the DAGs in Figure 2.4. From the above definition, the corresponding factoriza-
tions are p(v) = p(a)p(d|a)p(b|a)p(c|b, d) in (a) and p(v) = p(a)p(d|a)p(b|a, d)p(c|b, d)
in (b). Suppose that A, B, C and D are 4 binary variables, then Tables 2.4 and 2.5
respectively define valid conditional probability distributions for each of the Bayesian
networks. In the context of discrete random variables, such tables are called conditional
probability tables (CPTs). Note that each of these conditional probability distribution
is normalized and can be intuitively interpreted. For example, from Table 2.4b we
have that the event D = 0 is more likely to happen if we already know that A = 0
(probability 0.6), than when we know that A = 1 (probability 0.5).

Directed acyclic graphs as independence models

Every DAG G induces a formal independence model I(G) over V, by means of
a graphical separation criterion called d-separation [GVP90]. In order to define
d-separation, we must first introduce the notion of a collidercollider node. Within a path
V1, . . . , Vk, an intermediate node Vi is said to be a collider iff it is in the form
Vi−1 ��� Vi ��� Vi+1.
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Fig. 2.4. Two directed acyclic graphs (DAGs).

Tab. 2.4. A set of conditional probability tables that define a valid set of parameters Θ for the Bayesian
network structure in Figure 2.4a.

(a) p(a)

A
0 1

0.4 0.6

(b) p(d|a)

D
0 1

A
0 0.6 0.4
1 0.5 0.5

(c) p(b|a)

B
0 1

A
0 0.3 0.7
1 0.1 0.9

(d) p(c|b, d)

C
B D 0 1

0
0 0.8 0.2
1 0.7 0.3

1
0 0.5 0.5
1 0.7 0.3

Tab. 2.5. The conditional probability table p(b|a, d) that, along with Tables 2.4a, 2.4d and 2.4b, define
a valid set of parameters Θ for the Bayesian network structure in Figure 2.4b.

B
A D 0 1

0
0 0.2 0.8
1 0.5 0.5

1
0 0.0 1.0
1 0.2 0.8
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Def. 2.4
DAG ind.

model

Given an DAG G, I(G) is the independence model such that a disjoint triplet 〈X, Y | Z〉
belongs to I(G) iff Z d-separates X and Y in G, that is, every path between a node in
X and a node in Y contains a non-collider node that belongs to Z, or a collider node
that does not belong to Z Y ANZ.

Again, the trivial relations 〈X, ∅ | Z〉 and 〈∅, Y | Z〉 are included in I(G). Note that
some authors propose a different definition of I(G) with the moralization criterion,
which was shown to be equivalent to the d-separation criterion [Lau+90]. From
the above definition, d-separation is equivalent to u-separation when G contains
no v-structurev-structure , that is, no pattern in the form V1 ��� V2 ��� V3 with V1 and V3

non-adjacent.

Ex. 2.8 Consider again the DAGs in Figure 2.4. In (a) the induced independence model is
〈{A}, {C} | {D, B}〉∧〈{D}, {B} | {A}〉. This is different from the independence model
induced from the undirected graph in Figure 2.1a, due to the v-structure D ��� C ��� B.
In (b) the independence model is 〈{A}, {C} | {D, B}〉, which is equivalent to the one
from the undirected graph in Figure 2.1b since here the DAG contains no v-structure.

Similarly to the undirected case, the two extreme independence models correspond
to the empty graph (without edges), where I(G) contains every possible triplet, and
a clique graph (without directed cycle), where I(G) contains only trivial relations.
Indeed, the addition of edges in a DAG only creates dependence relations, while
their removal creates independence relations.

A friendly interpretation of d-separation is the following. Consider a path between
two random variables X and Y , and a conditioning set Z. The path represents an
information flow. When Z is empty, each intermediate node that is not a collider is
open, that is, it lets the flow go through. Conversely, each intermediate node that is
a collider is closed, and blocks the flow. By adding some observed variables to Z, one
can only change the state of non-collider nodes from open to closed, and collider
nodes from closed to open. When a non-collider node along the path is known (i.e.
added to Z) it becomes closed, and when a collider node or one of its descendants
is known it becomes open. One then simply has to check if, given Z, all the nodes
along the path are open to determine if there is an information flow between X and
Y . In that case the path is said active, and Z does not d-separate X and Y .

Ex. 2.9 Consider the DAG in Figure 2.5. While in this graph the adjacencies are the same as
in the undirected graph in Figure 2.2, the independence model is different due to the
v-structure A ��� C ��� D. Here the independence model contains 〈{A}, {B} | {C}〉
because the only path A ��� C ��� B is closed by the non-collider C that is observed.
However, it does not contain 〈{A}, {B, F} | {C, E}〉 because in the path A ��� C ���
D ��� F the non-collider D is open, as well as the collider C that is observed. Other
interesting relations induced by G are 〈{A}, {F} | ∅〉 
P I(G), because of the open path
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Fig. 2.5. A directed acyclic graph to illustrate d-separation.

A ��� C ��� E ��� F . Conditioning on E does not d-separate A and F either, it closes
the previous path but opens a new one with A ��� C ��� E ��� D. We may then add C

to the conditioning set, which closes the two previous paths but opens yet a new one
with A ��� C ��� D ��� F . We may now add D, which ultimately closes every path, and
finally notice that conditioning on {C, D} is sufficient and that E it no longer necessary
in the conditioning set.

Soundness of Bayesian networks

As with Markov networks, a Bayesian network structure always defines an I-map of
the underlying probability distribution. Moreover, the converse implication is true
(recall that for MNs the converse holds only when p > 0). Consider G a directed
acyclic graph graph over the variables V, and p a probability distribution over the
same set.

Thm. 2.4 With G a DAG, I(G) is an I-map for p iff p factorizes recursively over G.

Proof. We first prove the implication I-map =⇒ factorization. Because G is a DAG,
we may arrange its nodes in a topological ordering V1, . . . , Vn according to G, that is,
i < j if Vi ��� Vj is in G. From the chain rule of probabilities, we can write p as

p(v) =
n∏

i=1
p(vi|v1, . . . , vi−1).

Now, consider one of the factors p(vi|v1, . . . , vi−1). From the d-separation criterion,
every node is independent of its non-descendants given its parents (a.k.a. local
Markov property), that is, Vi ⊥⊥ NDVi \ PAVi | PAVi . Because of our ordering of
the nodes, all of Vi’s parents are necessarily in the set {V1, . . . , Vi−1}, while none
of its descendants can possibly be in the set. Then, we can write {V1, . . . , Vi−1} =
W Y PAVi , with W Ď (NDVi \ PAVi). From the decomposition property we obtain
Vi ⊥⊥ W | PAVi , which implies

p(vi|v1, . . . , vi−1) = p(vi|paVi
).
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By applying this transformation to every such factor, we obtain the desired recursive
factorization according to G.

Second, we prove the converse. Let X, Y, Z be any three disjoint subsets of V
such that 〈X, Y | Z〉 P I(G). As Z d-separates X and Y, there are no direct edges
between X and Y. Hence, the variables in X have no parent in Y and the variables
in Y have no parent in X. Moreover, there are no pattern in the form X ��� Z ��� Y

with X P X, Z P Z and Y P Y, so the variables in Z have either no parent in X or
no parent in Y. Let us now introduce C, the set of all the remaining variables that
have no descendant in X Y Y Y Z. In the case where X Y Y Y Z Y C = V, we may
re-write the factorization of p as

p(v) =
∏

ViPX Y(Z X CHX)
p(vi|paVi

) ·
∏

VjPY Y(Z\CHX)
p(vj |paVj

) ·
∏

VlPC
p(vl|paVl

).

As discussed, none of the factors in the first product involves any variable in Y Y C,
and none in the second product involves any variable in X Y C. Let us now marginal-
ize out C, we obtain

p(x, y, z) = f(x, z)g(y, z) ·
∑

c

∏
VlPC

p(vl|paVl
).

Consider C1, . . . , Ck an arrangement of the nodes in C in a topological ordering
according to G. Then, the third term transforms to a recursive sum

∑
c1

p(c1|paC1) · · · · ·
∑
ck

p(ck|paCk
).

The right-most term sums to 1 because of the normalization constraint, and vanishes.
By summing each remaining term from right to left, the whole expression equals
1 and we obtain p(x, y, z) = f(x, z)g(y, z). The desired independence follows
immediately (Theorem 1.1), that is, X ⊥⊥ Y | Z. In the case where X Y Y Y Z Y C Ă
V, let us to consider the remaining set of variables W = V \ (X Y Y Y Z Y C) as
follows. Necessarily, one can find a partition {W1, W2} of W such that Z d-separates
X Y W1 and Y Y W2 in G. Suppose it is not the case, then there is a node W P W
such that 〈X, {W} | Z〉 
P I(G) and 〈{W}, Y | Z〉 
P I(G). Equivalently, there is an
open path P1 = (X, . . . , V, . . . , W ) between a node X P X and W , and an open path
P2 = (Y, . . . , V, . . . , W ) between a node Y P Y and W , with V, . . . , W the shared
sequence between P1 and P2 (of size 1 at least in the case where V = W ). Because
〈X, Y | Z〉 P I(G), the path P3 = (X, . . . , V, . . . , Y ) is closed, so V is a collider node
in P3 that is not in Z nor has any descendant in Z. This implies that V has no
descendant in X or Y either, otherwise this would result in an open path between
X and Y. Hence, V belongs to C. This also implies that V is not a collider in P1,
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otherwise the path would be closed. Moreover, there can be no collider node along
the path V, . . . , W , otherwise it would be a descendant of V without a descendant
in Z, and the path P1 would be closed. So either W is a descendant of V , or W = V .
In both cases W also belongs to C, which violates our initial assumption W P W.

X . . . V

. . .

W

. . . Y. . . . . .

P1 P2

P3

Using our precedent argument we have that X Y W1 ⊥⊥ Y Y W2 | Z. Using the
decomposition property we obtain the desired result X ⊥⊥ Y | Z.

Conditional independence properties of directed acyclic graphs

Any independence model that can be expressed by d-separation over a directed
acyclic graph (i.e. for which there exists a DAG G that is a perfect map) is said
to be DAG-faithful. Unlike in the case of undirected graphs, it was shown that
such independence models can not be characterized by a finite set of conditional
independence properties [Gei87; Li08; WWL02]. However, such a finite set of
axioms can provide a necessary condition for an independence model to be faithful
to a DAG. Pearl [Pea89] gives such a partial characterization.

Thm. 2.5 Consider an independence model I defined over V. A necessary condition for I to be
DAG-faithful is that it satisfies the following properties:

• Symmetry: 〈X, Y | Z〉 ⇐⇒ 〈Y, X | Z〉.

• Decomposition: 〈X, Y Y W | Z〉 =⇒ 〈X, Y | Z〉.

• Weak Union: 〈X, Y Y W | Z〉 =⇒ 〈X, Y | Z Y W〉.

• Contraction: 〈X, Y | Z〉 ∧ 〈X, W | Z Y Y〉 =⇒ 〈X, Y Y W | Z〉.

• Intersection: 〈X, Y | Z Y W〉 ∧ 〈X, W | Z Y Y〉 =⇒ 〈X, Y Y W | Z〉.
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• Composition: 〈X, Y | Z〉 ∧ 〈X, W | Z〉 =⇒ 〈X, Y Y W | Z〉.

• Weak transitivity, ∀W P W:
〈X, Y | Z〉 ∧ 〈X, Y | Z Y W 〉 =⇒ 〈X, W | Z〉 ∨ 〈W, Y | Z〉.

• Chordality, ∀(X, Y, Z, W ) P X × Y × Z × W:
〈X, Y | {Z, W}〉 ∧ 〈Z, W | {X, Y }〉 =⇒ 〈X, Y | W 〉 ∨ 〈X, Y | Z〉.

As a direct consequence, DAG-faithful independence models are compositional
graphoids.

Moreover, as in the undirected case, an important property of directed acyclic graphs
is that they always produce a probabilistic independence model. Indeed, it was
shown by Geiger and Pearl [GP88] that for every independence model I that is
DAG-faithful, there exists a probability distribution that satisfies all and only the
independence relations in I. However, here again the converse does not necessarily
hold, that is, not every probability distribution is DAG-faithful.

A note on causal networks

We now briefly discuss the idea of causality and causal networks, although this is
not required for the understanding of our work. We find necessary to add some
clarifications to highlight the difference between a Bayesian network and a causal
network, since many people do not distinguish between the two notions and tend to
interpret every DAG as a causal graph.

Causal networks are basically Bayesian networks whose structure can be given a
causal interpretation, that is, each directed edge represents a direct causal influence
between a cause and an effect. Causal networks offer a powerful tool for reasoning
about the causal influences among a set of random variables. A well-known paradox
in statistics that is well explained with a causal DAG is the so-called Simpson’s
paradox, first described in Simpson [Sim51].

Ex. 2.10
Simpson’s

paradox
(1/2)

Consider a population of people who have the same disease, and among which some
took a treatment, and some recovered the disease. Take three binary random variables
G, T and R that respectively correspond to three indicators for each individual: his
gender g P {male, female}, he took a treatment t P {yes, no}, and whether or not he
recovered from the disease r P {yes, no}. Let us observe 200 people randomly, 100 male
and 100 female, which results in the probability distribution given in Table 2.6. We
ask the following question: is the treatment efficient? In the general case, people who
took the treatment tend to recover more: p(R = yes|T = yes) > p(R = yes|T = no).
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Tab. 2.6. Illustration of Simpson’s paradox. This table represents the joint probability distribution of
G (gender), T (treatment) and R (recovery) on a population of 200 people (100 male and
100 female). #(g, t, r) counts the number of people that have characteristics (g, t, r) in the
population, while p(r|g, t) and p(r|t) the corresponding conditional probability distributions.

R
T G (recovery)

(treatment) (gender) no yes no yes no yes

no
male 42 28 .60 .40

.48 .52
female 06 24 .20 .80

yes
male 24 06 .80 .20

.45 .55
female 21 49 .30 .70

#(g, t, r) p(r|g, t) p(r|t)

However, it also appears that women who took the treatment tend to recover less:
p(R = yes|T = yes, G = female) < p(R = yes|T = no, G = female). And, very
surprisingly, the same phenomenon appears in the population of men: p(R = yes|T =
yes, G = male) < p(R = yes|T = no, G = male). All these statements appear to be
true according to p, but are rather counter-intuitive, hence the paradox. Let us to give it
an explanation with a causal DAG.

Suppose the causal DAG in Figure 2.6a represents the causal mechanisms between our
three random variables. Admittedly, the causal directions in the DAG are plausible:
the gender is determined when people are born thus can not be an effect of taking the
treatment or recovering the disease, and the treatment is taken before the recovery in
time thus can not be an effect of it. We may now re-formulate our initial question more
explicitly, that is: does the action of taking the treatment has a positive causal effect on
the recovery of the disease?

When measuring the probability p(r|t), two information paths are open in the graph
(in the sense of d-separation): the direct causal path T ��� R and the indirect non-causal
path T ��� G ��� R due to the common cause G. Suppose the direct influence T ��� R is
negative (taking the medicine has a negative effect on the recovery), then the statistical
relationship carried in the first path is negative. At the same time, suppose the direct
influences G ��� T and G ��� R are both positive (women tend to consume more medicine
than men, and women naturally tend to recover the disease better than men), then the
statistical relationship carried in the second path is positive as well (people who have
taken the treatment tend to be women, who tend to recover better, so overall people
who have taken medicine tend to recover better). When measuring the conditional
probability p(r|t), the statistical relationships carried in the two paths are mixed up,
which results in a negative or a positive relationship depending on which path is the
strongest. In the present situation the overall statistical relationship is positive. However,
it can not be given any causal meaning since it carries information from the non-causal
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Fig. 2.6. Two causal DAGs illustrating Simpson’s paradox.

path T ��� G ��� R. The second measurement p(r|t, g) adds G to the conditioning set,
which closes the non-causal path T ��� G ��� R owing to the d-separation criterion.
Because of that, only the causal path T ��� R remains, and the resulting statistical
measurements can be interpreted as a causal relationships. So, with this causal DAG, it
is the second set of measurements (consider men and women separately) that answers
our initial question. The answer is then no, the treatment does not have a positive
causal effect on the disease recovery.

By modeling Simpson’s paradox with a causal DAG, we can measure unambiguously
the causal influence between two random variables, by choosing a proper condi-
tioning set Z that closes every non-causal path in the DAG and keeps every causal
path open between the variables of interest. This measurement is known as the
do-calculusdo-calculus [Pea95; Pea12], which is nowadays a well established tool for causal
inference. It consists in measuring the probability of observing an event given that
an action is performed, denoted p(x|do(y)). This is different from p(x|y), i.e. the
probability of observing an event given that another event is observed. In do-calculus,
the structure of a causal DAG tells us how to compute p(x|do(y)). In Example 2.10,
we have p(r|do(t)) = ∑

g p(g)p(r|g, t) because of the common cause G. In that case
G is commonly called a confounding variable. We can now measure the causal
influence from T to R unambiguously, which gives p(R = yes|do(T = no)) = 0.60
and p(R = yes|do(T = yes)) = 0.45. We end up with the same conclusion we had
reached in Example 2.10.

In Example 2.10, the direction of the edges was justified only by introducing some
external knowledge, a.k.a. the expert knowledge. Without an expert to validate that
the DAG structure indeed corresponds to a plausible causal system, no causal inter-
pretation can be given to the measured probabilities. When someone tries to infer a
causal explanation from observational data, that person always implicitly enforces
an underlying causal system. If that causal system is wrong, such interpretations can
lead to perilous conclusions.

Ex. 2.11
Simpson’s

paradox
(2/2)

Consider the same probability distribution as in Example 2.10, but suppose that the
variable G is replaced with the variable B, b P {low, high} representing the blood
pressure level of each individual. The probability distribution is exactly the same,
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however now the causal DAG could arguably be the one in Figure 2.6b. From our
external knowledge, the blood pressure is more likely to be a consequence than a cause
of taking the treatment. If we apply the do-calculus again to assess the efficiency of
the treatment, then we have this time p(r|do(t)) = p(r|t) due to the causal structure
of the DAG. This gives p(R = yes|do(T = no)) = 0.52 and p(R = yes|do(T = yes)) =
0.55, and we conclude that the treatment has a positive causal effect on the recovery
of the disease. Same observational data, different causal system, different causal
interpretation.

It is important to keep in mind that it is impossible to infer causal mechanisms
from observational data. It is not because a Bayesian network correctly encodes a
probability distribution p, even faithfully, that the corresponding DAG necessarily
represents causal mechanism that generated the data. Indeed, the two DAGs in
Figure 2.6 are able to faithfully encode the probability distribution from Table 2.6.
Without any additional information, both DAGs are indistinguishable with respect
to the observed data, and represent equally plausible causal systems. However,
performing do-calculus with these two DAGs does not lead to the same conclusions.

In the general case, it is impossible to infer causal relationships from a probability
distribution based on observational data. The only way to infer such relationships
is by collecting experimental data, that is, performing an action on the system and
observe how it affects the probability distribution. This is well-known in the domain
of clinical studies, as one can assess the effectiveness of a treatment only through
double-blind trials (a.k.a. placebo-controlled studies). Readers interested in causality
may consult Dawid [Daw10], or the very comprehensive book from Pearl [Pea09].

Discussion

We will now compare directed acyclic and undirected graphical models, namely
Bayesian networks and Markov networks. We first discuss how Bayesian networks
are similar to Markov networks, and finally we emphasize on their differences.

First, just like Markov networks, any probability distribution can be encoded in a
Bayesian network. Consider an arbitrary ordering V1, . . . , Vn of the nodes, and the
complete DAG such that Vi ��� Vj for every j > i. Then, the recursive factorization
according to the DAG is p(v) = p(v1)p(v2|v1) . . . p(vn|v1, . . . , vn−1), which respects
the chain rule of probability and does not impose any constraint on p. This holds for
any ordering of the nodes, and thus any complete DAG.
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However, just like Markov networks, the structure of a Bayesian network should be
as sparse as possible. This is true for probabilistic graphical models in general, and
neither Markov networks or Bayesian networks are an exception to this rule. Only
a small difference arises with Bayesian networks: while in undirected graphs the
independence model results solely from the absence of edges, in DAGs it also results
from the presence of v-structures. It is still true, however, that removing an edge
in a DAG only creates independence relations, while adding an edge only creates
dependence relations, thus the notion of sparseness for DAGs remains relevant.

The main difference between BNs and MNs comes from their expressive power,
that is, their capacity to express independence models. Admittedly, the separation
criterion is more complex for DAGs than from UGs, and in that sense it is less
intuitive to interpret the structure of a BN than the structure of a MN. However, this
higher complexity comes with an increased expressive power for DAGs. For the same
number of nodes one can express more independence models with a DAG than with
an UG. With 3 random variables, there are 8 distinct UG models and 11 DAG models.
With 4 random variables, there are 64 UG models and 185 DAG models, and so
on. However, DAG models do not subsume UG models, as there are probabilistic
independence models that UG-faithful, but not DAG-faithful.

Ex. 2.12 First, let us consider again the car parking example from Example 1.1, where the
only non-trivial independence relation is X ⊥⊥ Y . In the last section, we showed that
there exists no undirected graphical model that encodes only this relation. However,
it is possible to encode this relation in the DAG X ��� Z ��� Y . In this example p is
DAG-faithful, but not UG-faithful.

Ex. 2.13 Second, consider the Markov network structure in Figure 2.1a, along with the distri-
bution encoded in Table 2.1. Clearly, the only non-trivial independence relations are
A ⊥⊥ C | B, D and B ⊥⊥ D | A, C, and the undirected graph is a perfect map for p.
However, we can show that there exists no DAG model that encodes these two relations
only. Suppose such a DAG exists, then due to the chordality property it also encodes
either 〈A, B | C〉 or 〈A, B | D〉, which are not supported by p. Thus, in this example p

is UG-faithful, but not DAG-faithful.

Ex. 2.14 Finally, consider a noisy exclusive OR (XOR) relationship between three random vari-
ables A, B and C, with the probability distribution represented in Table 2.7. Here
p supports only three non-trivial independence relations A ⊥⊥ B, B ⊥⊥ C and C ⊥⊥ A.
Unfortunately, there exists no undirected graph that can encode all and only these
independence relations, that is, p is not UG-faithful. Indeed, suppose such a graph exists,
then due to the strong union property it also induces an independence relation that is not
in p (A ⊥⊥ B =⇒ A ⊥⊥ B | C, and so on). Even worse, it also means that there exists
no undirected graph that can encode any of the independence relations in p, so at best a
Markov network model requires 7 free parameters to encode p, with a complete graph.
What about Bayesian networks? We can show that p is not DAG-faithful either. Due to
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the composition property, any DAG that encodes two of the independence relations in
p necessarily breaks a dependence relation as well (A ⊥⊥ B ∧ A ⊥⊥ C =⇒ A ⊥⊥{B, C},
and so on). However, there are some structures that are able to encode only one of the
independence relations, such as the DAG A ��� C ��� B. This BN structure results in the
factorization p(a, b, c) = p(a)p(b)p(c|a, b), which expresses p with 6 free parameters. In
this example p is neither UG-faithful nor DAG-faithful, so both Markov networks and
Bayesian networks are not well-suited models to encode p efficiently.

And yet, we can show that any distribution of binary random variables that supports
the independence relations in p can be encoded efficiently with only 4 parameters. Due
to the independence relation A ⊥⊥ B, p can be factorized as p(a, b, c) = p(a)p(b)p(c|a, b).
This reduces the number of free parameters to 6, for example: p(α), p(β), p(γ|α, β),
p(γ|α, β̄), p(γ|ᾱ, β) and p(γ|ᾱ, β̄). We will now show that, due to B ⊥⊥ C and C ⊥⊥ A,
two of these parameters are not free to vary once the other ones are known. Because
B ⊥⊥ C we can write

p(β̄, γ) = p(β̄)p(γ).

We substitute p(β̄, γ) by
∑

a p(a, β̄, γ), and p(γ) by
∑

a,b p(a, b, γ) to obtain

p(α, β̄, γ) + p(ᾱ, β̄, γ) = p(β̄)
[
p(α, β, γ) + p(α, β̄, γ) + p(ᾱ, β, γ) + p(ᾱ, β̄, γ)

]
.

Then, we regroup the p(ᾱ, β̄, γ) and p(α, β̄, γ) terms on one side to obtain

p(β)p(ᾱ, β̄, γ) = p(β̄) [p(α, β, γ) + p(ᾱ, β, γ)] − p(β)p(α, β̄, γ).

Finally, because A ⊥⊥ B we replace each p(a, b, c) term by p(a)p(b)p(c|a, b). We readily
obtain

p(γ|ᾱ, β̄) = p(α)
1 − p(α)

[
p(γ|α, β) − p(γ|α, β̄)

]
+ p(γ|ᾱ, β).

Thus, the parameter p(γ|ᾱ, β̄) is induced by 4 other parameters. Notice that we used
only two independence relations A ⊥⊥ B and B ⊥⊥ C. We may follow the same reasoning
with A ⊥⊥ B and A ⊥⊥ C to derive a similar result, that is,

p(γ|ᾱ, β̄) = p(β)
1 − p(β) [p(γ|α, β) − p(γ|ᾱ, β)] + p(γ|α, β̄).

By combining these two statements we readily obtain that the parameter p(β) is also
induced by the same set of 4 parameters, that is,

p(β) =

⎛
⎜⎝
⎡
⎣ p(α)

1−p(α)

[
p(γ|α, β) − p(γ|α, β̄)

]
+ p(γ|ᾱ, β) − p(γ|α, β̄)

p(γ|α, β) − p(γ|ᾱ, β)

⎤
⎦

−1

+ 1

⎞
⎟⎠

−1

.
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In the end, the two parameters p(β) and p(γ|ᾱ, β̄) are not free to vary once p(α),
p(γ|α, β), p(γ|α, β̄) and p(γ|ᾱ, β) are fixed, which reduces the number of free parame-
ters that encode p to 4.

Tab. 2.7. A probability distribution p(a, b, c) of three binary random variables that corresponds to the
noisy XOR relationship P (A = B ⊕ C) = 1 − ε (exclusive OR). Here p supports the positivity
condition (p > 0) for any ε P]0, 1/2[Y]1/2, 0[.

C
A B γ̄ γ

ᾱ
β̄ (1 − ε)/4 ε/4
β ε/4 (1 − ε)/4

α
β̄ ε/4 (1 − ε)/4
β (1 − ε)/4 ε/4

What can we conclude about the difference between undirected graphical models
(Markov networks) and directed acyclic graphical models (Bayesian networks)? First,
none of these models is superior to the other, as there are probability distributions
for which a DAG is better-suited than an UG to capture the underlying independence
model, as well as cases where the contrary stands. The two models are not comple-
mentary either, as there are probability distributions that are neither DAG-faithful
nor UG-faithful. This situation is pictured in Figure 2.7. An interesting class of
probabilistic graphical models are the decomposable modelsdecompos-

able
models

, which correspond to
independence models that are both UG-faithful and DAG-faithful, that is, chordal
UGs and DAGs without v-structure. de Campos [de 96] shows that such models are
characterized by a finite set of conditional independence properties, that is, those in
Theorem 2.3 plus the strong chordality axiom:

〈X, Y | Z Y W〉 ∧ 〈Z, W | X Y Y〉 =⇒ 〈X, Y | Z〉 ∨ 〈X, Y | W〉.

A decomposable model is also characterized by the existence of a junction tree over
its cliques, which allows for efficient learning and inference methods [Cow+99].
Still, decomposable models are weaker than general UGs and DAGs as independence
models, in the sense that they are much less expressive.

Despite the inherent limitation of UG and DAG models, they are still very frequently
used in the machine learning community due to their simple structure which is rather
intuitive to interpret, and also because the factorization remains simple and there
exists plenty of tools available to solve both the learning and inference problems
with these models. An interesting question to ask is if we could find a graphical
independence model that subsumes both DAG and UG models, maybe by allowing a
mixture of undirected and directed edges in the graph? This idea of mixing directed
and undirected graphical models is rather old, as it can be traced back to Verma and
Pearl [VP88; VP90] who introduced the idea of hybrid graphs. In the next section
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Fig. 2.7. Overlapping between probabilistic independence models (p), independence models based
on u-separation (UG-faithful), and d-separation (DAG-faithful).

we will try to give a brief summary of the recent advances in advanced graphical
models.

2.2 Advanced graphical models

We will now briefly review the state-of-the-art and recent developments in the
field of advanced probabilistic graphical models. As discussed in the previous
section, classical PGMs based on undirected and directed acyclic graphs suffer
from limitations inherent to their restricted expressive power as independence
models. As we will see next, over the years many alternative graphical models
have been proposed to overcome these limitations, by extending and unifying the
expressive power of UGs and DAGs. The study of advanced graphical models is
still an active area of research today, and a lot of different families of models and
interpretations can be found in the literature. In this section we will try to adopt an
epistemological approach, by following the development of probabilistic graphical
models chronologically.

We will use the notation from Sadeghi and Lauritzen [SL15] who unify most of the
families of advanced graphical models with graphs made of four types of edges:
directed edges denoted by arrows ���, and three types of undirected edges denoted
by lines − , arcs ���� and dashed arcs ���.

The definitions of parents, children, ancestors and descendants introduced in the
context of directed graphs remain valid in this context. Additionally, the neighbours

neighbour of a set of nodes X is the set NEX = {V1|V1 − V2 is in G, V1 
P X, V2 P X}. The
spousesspouse of a set of nodes X is the set SPX = {V1|V1 ���� V2 is in G, V1 
P X, V2 P X}.
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Fig. 2.8. Two bi-directed graphs (BGs). The non-trivial independence relations induced by b-
separation are 〈A, C | ∅〉 and 〈B, D | ∅〉 for the first graph, and only 〈A, C | ∅〉 for the
second.

The partnerspartner of a set of nodes X is the set PTX = {V1|V1 ��� V2 is in G, V1 
P X, V2 P
X}.

A semi-directed cyclesemi-dir.
cycle

is a cycle V1, . . . , Vk such that Vi P PAVi+1 for at least one
1 ≤ i < k, and Vi 
P CHVi+1 for all 1 ≤ i < k. In other words, a semi-directed cycle
is composed only of lines −, arcs ���� or arrows ��� pointing from left to right, and
contains at least one arrow (it may contain only arrows).

2.2.1 Bi-directed graphs

In Speed and Kiiveri [SK86] appears the idea of representing zero hypotheses on the
covariance matrix of normally distributed variables in the form of a graph. The idea
is further developed by [CW93; Kau96], and results in a new probabilistic graphical
model called a covariance graph, whose structure is a simple undirected graph with
dashed edges to distinguish it from classical undirected graphical models, a.k.a.
Markov networks. The interpretation of covariance graphs in terms of independence
model appears to be dual to the interpretation of classical undirected graphs, which
in the case of normally distributed variables represent zero hypotheses on the inverse
covariance matrix. To be consistent with recent practice, we represent covariance
graphs with bi-directed edges ����.

The separation criterion for bi-directed graphs (BGs for short) is given by Drton and
Richardson [DR08]. We conveniently name it b-separation.

Def. 2.5
BG ind.
model

Given a bi-directed graph G, I(G) is the independence model such that a disjoint triplet
〈X, Y | Z〉 belongs to I(G) iff Z b-separates X and Y in G, that is, every path between
a node in X and a node in Y contains a node not in Z.
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Interestingly, it appears that the BG interpretation of an undirected graph is the
dual of the UG interpretation using u-separation. Equivalently, BG graphs may be
interpreted with the d-separation criterion if we re-define the pattern of a collider
node as ���� Vi ����. As for conditional independence properties, it can be found in
[RS02][Theorem 7.5] that every BG independence model is probabilistic.

The general factorization associated with a BG model is also given by Drton and
Richardson [DR08].

Def. 2.6
BG prob.

model

An BG model consists in a set of random variables V = {V1, . . . , Vn}, a simple bi-
directed graph G = (V, E), and a set of parameters Θ. Together, G and Θ define a
probability distribution p over V which factorizes, for every subset S Ď V, as

p(s) =
∏

CiPCmGS

p(ci)

where CmGS is the set of all maximal connected sets in GS, the induced subgraph of G
over S.

Obviously, the parameterization of a BG model appears less trivial than that of an UG
model, since the constraints on p are expressed in the form of several factorizations
on marginal distributions. Nevertheless, Drton and Richardson [DR08] give practical
solutions to parameterize BG models in the discrete case, by expressing p in terms
of its saturated Möbius parameters. As for soundness, it was also shown by Drton
and Richardson [DR08] that, with G a BG, I(G) is an I-map for p iff p factorizes
according to G.

2.2.2 Chain graphs

The idea of combining directed and undirected edges to form hybrid graphical
independence model can be traced back to Verma and Pearl [VP88], who briefly
emits a separation criterion for so-called hybrid graphs. Shortly after, the concept
of chain graph appears in the literature, that is, a graph with two types of edges,
directed and undirected, that accepts no semi-directed cycle. We will see that, under
a particular interpretation, each chain graph G defines a probabilistic independence
model I(G) and a corresponding factorization of p which is a necessary condition for
I(G) to be an I-map of p. As of now, three different interpretation of chain graphs as
probabilistic graphical models have been studied, namely the LWF, AMP and MVR
interpretations. A fourth possible interpretation exists according to Drton [Drt09],
and appears to be the dual of the AMP interpretation [SL14]. Depending on which
interpretation is applied, for the same chain graph G both I(G) and the induced
factorization may differ. Therefore, each of these chain graph interpretations defines
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Fig. 2.9. A chain graph (CG), whose chain components are {A, B} and {C, D, E}.

a new family of probabilistic graphical models on its own. We will now introduce
the common concepts shared by these interpretations.

Common definitions

A chain graphchain graph is a simple graph that admits two types of edges, directed ��� and
undirected −, and accepts no semi-directed cycle.

A chain componentchain
component

of a chain graph G is a maximal undirected connected set, that is,
a maximal connected set in the subgraph over V that contains only the undirected
edges in G. Thus, each chain graph decomposes uniquely into chain components.

A sectionsection of a walk V1, . . . , Vk is an intermediate subwalk Vi, . . . , Vj , 1 < i ≤ j < k

that is undirected and maximal, that is, which does not accept any other such
intermediate undirected subwalk as a proper superset. Thus, any walk decomposes
uniquely into sections.

LWF chain graphs

Lauritzen and Wermuth [LW89] propose the first probabilistic graphical model whose
structure is a chain graph. This new interpretation of chain graphs is later completed
by Frydenberg [Fry90], and is now referred to as the LWF-CG model (Lauritzen,
Wermuth, Frydenberg).

The separation criterion for LWF chain graphs is called c-separation [SB98], and is
based on the notion of collider sections. In an LWF chain graph, a collider sectioncollider

section
is

any section ρ = (Vi, . . . , Vj) that follows the following pattern in the walk: ��� ρ ���.
Collider sections in LWF-CGs can be seen as an extension of colliders in DAGs, in
which all sections are single nodes.

Def. 2.7
LWF-CG ind.

model

Given an LWF-CG G, I(G) is the independence model such that a disjoint triplet
〈X, Y | Z〉 belongs to I(G) iff Z c-separates X and Y in G, that is, every walk between
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a node in X and a node in Y contains a non-collider section that has a node in Z, or a
collider section that has no node in Z.

It is clear that c-separation for LWF chain graphs reduces to u-separation in the case
of an UG, and d-separation in the case of a DAG. Note that the use of walks in the
c-separation criterion seems problematic at first sight, as the number of walks in a
graph is potentially infinite. This problem is alleviated by Studený [Stu98], who
shows that an efficient local algorithm exists to check for c-separation. Moreover,
one can argue that the formulation of separation in DAGs is made simpler and
somehow more elegant with the c-separation criterion than with the d-separation
criterion, as it is no longer necessary to refer to the descendants of colliders. As for
conditional independence properties, it was shown by Studený [Stu97] that every
LWF-CG independence model is probabilistic.

The factorization of p according to an LWF-CG is given by [Fry90][Theorem 4.1],
and relies on the notion of closure graphclosure

graph
. Given an LWF chain graph G and a chain

component K, the closure graph H(G, K) is obtained as follows: i) take H the
induced subgraph of G over the node set K Y PAK; ii) add an edge between each
pair of nodes in PAK; iii) make each directed edge undirected.

Def. 2.8
LWF-CG prob.

model

An LWF-CG model consists in a set of random variables V = {V1, . . . , Vn}, a chain
graph G = (V, E), and a set of parameters Θ. Together, G and Θ define a probability
distribution p over V which factorizes as

p(v) =
∏

KiPCcG

p(ki|paKi
)

where CcG is the set of all chain components in G, and each p(ki|paKi
) term further

factorizes as
p(ki|paKi

) =
∏

CjPClH(G,Ki)

φj(cj)

where ClH(G,Ki) is the set of all cliques in the closure graph H(G, Ki), and φj is a
positive function.

It is clear that the above factorization reduces to the clique factorization of a Markov
network in the case of a fully undirected graph, and the recursive factorization of
a Bayesian network in the case of a fully directed graph. As for soundness, it was
shown by Frydenberg [Fry90] that, with G an LWF-CG, I(G) is an I-map for p if p

factorizes according to G, and the converse holds if p > 0.

As LWF-CGs generalize both UGs and DAGs, they appear to be superior in every
point to classical probabilistic graphical models. However, LWF-CGs do not subsume
BGs.
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AMP chain graphs

Shortly after LWF chain graph models were introduced, Andersson et al. [AMP96]
propose an alternate interpretation of chain graphs as probabilistic independence
models, which is now referred to as the AMP-CG models (Andersson, Madigan,
Perlman, or conveniently Alternative Markov Property in the original paper).

The new separation criterion for a AMP chain graphs is called p-separation [LPM01],
and extends the notion of collider nodes from DAGs (whereas c-separation was
based on collider sections). In an AMP chain graph, a collider nodecollider

node
in a walk is any

intermediate node Vi that follows one of the following patterns: ��� Vi ��� or −Vi ���.
The pattern ��� V1− may be excluded without loss of generality, since p-separation is
symmetric. Colliders in AMP-CGs can be seen as an extension of colliders in DAGs,
in which only the pattern ��� Vi ��� appears.

Def. 2.9
AMP-CG ind.

model

Given an AMP-CG G, I(G) is the independence model such that a disjoint triplet
〈X, Y | Z〉 belongs to I(G) iff Z p-separates X and Y in G, that is, every walk between
a node in X and a node in Y contains a non-collider node in Z, or a collider node that
is not in Z.

Here again, p-separation for AMP-CGs reduces to u-separation in the case of an UG,
and d-separation in the case of a DAG. Furthermore, the use of walks in p-separation
is not problematic, as Levitz et al. [LPM01] shows that the induced independence
model can be recovered in linear time with respect to the number of nodes and
edges. As for conditional independence properties, it was shown by Levitz et al.
[LPM01] that every AMP-CG independence model is probabilistic.

The factorization of p according to an AMP-CG model was recently given by Peña
[Peñ15][addendum Theorem 1], and relies on a specific notion which we call
conditional closure graphcond.

closure
graph

. Given an AMP chain graph G and a chain component K,
the conditional closure graph L(G, S) of a subset S Ď K is obtained as follows: i)
take H the induced subgraph of G over the node set S; ii) add an undirected edge
between each pair of nodes in S if they accept a path in G made only of intermediate
nodes in K \ S.

Def. 2.10
AMP-CG

prob. model

An AMP-CG model consists in a set of random variables V = {V1, . . . , Vn}, a chain
graph G = (V, E), and a set of parameters Θ. Together, G and Θ define a probability
distribution p over V which factorizes as

p(v) =
∏

KiPCcG

p(ki|paKi
)

46 Chapter 2 Probabilistic graphical models



where CcG is the set of all chain components in G, and for every subset S Ď Ki, the
conditional probability p(s|paKi

) factorizes as

p(s|paKi
) =

∏
CjPClL(G,S)

φj(cj , paCj
)

where ClL(G,S) is the set of all cliques in the conditional closure graph L(G, S), and φj

is a positive function.

The above factorization appears more complex than that of LWF-CG models, since it
involves several factorizations over marginals of p(ki|paKi

), for each chain compo-
nent. Still, this factorization reduces to the clique factorization of a Markov network
in the case of a fully undirected graph, and the recursive factorization of a Bayesian
network in the case of a fully directed graph. As for soundness, it was shown by Peña
[Peñ15] that, with G an AMP-CG, I(G) is an I-map for p if p factorizes according to
G, and the converse holds if p > 0.

AMP-CGs, just like LWF-CGs, generalize both UGs and DAGs, but not BGs. However,
both CG interpretations produce a different family of independence models, and no
interpretation subsumes the other.

MVR chain graphs

A third interpretation of chain graphs as independence models comes from Cox and
Wermuth [CW93; CW96]. Such models are commonly called MVR-CG models, as
they were initially proposed as models of multivariate regression.

The new separation criterion for a MVR chain graphs is called m-separation [RS02],
and is based on the notion of collider nodes. In an MVR chain graph, a collider node

collider
node

in a walk is any intermediate node Vi that follows one of the following patterns:
��� Vi ���, ��� Vi− or −Vi−. Note that this definition may also include symmetric
patterns as m-separation is symmetric. Similarly to AMP-CGs, the notion of collider
nodes in MVR-CGs can be seen as an extension of colliders in DAGs.

Def. 2.11
MVR-CG ind.

model

Given an MVR-CG G, I(G) is the independence model such that a disjoint triplet
〈X, Y | Z〉 belongs to I(G) iff Z m-separates X and Y in G, that is, every walk between
a node in X and a node in Y contains a non-collider node in Z, or a collider node that
is not in Z.

Unlike LWF and AMP chain graphs, m-separation for MVR-CGs does not reduce to
u-separation in the case of an UG. However, it reduces to d-separation in the case
of a DAG, and b-separation in the case of a BG. As for conditional independence
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properties, it can be found in Richardson and Spirtes [RS02][Theorem 7.5] that
every MVR-CG independence model is probabilistic.

The factorization of p according to an MVR-CG model is given by Drton [Drt09][Theorem 8].

Def. 2.12
MVR-CG

prob. model

An MVR-CG model consists in a set of random variables V = {V1, . . . , Vn}, a chain
graph G = (V, E), and a set of parameters Θ. Together, G and Θ define a probability
distribution p over V which factorizes as

p(v) =
∏

KiPCcG

p(ki|paKi
)

where CcG is the set of all chain components in G, and for every subset S Ď Ki, the
conditional probability p(s|paKi

) factorizes as

p(s|paKi
) =

∏
CjPCmGS

p(cj |paCj
)

where CmGS indexes the set of maximal connected sets in GS the induced subgraph of G
over S.

Interestingly, the above factorization for MVR chain graphs reduces to the factoriza-
tion of a bi-directed graph in the case of a fully undirected graph. Not surprisingly,
it also reduces to the recursive factorization of a Bayesian network in the case of a
fully directed graph. As for soundness, it was shown by Drton [Drt09] that, with
G an MVR-CG, I(G) is an I-map for p iff p factorizes according to G. Interestingly,
under the MVR interpretation, the positivity condition p > 0 of LWF and AMP
interpretations is not required for the converse implication to hold.

As MVR-CGs generalize both BGs and DAGs but not UGs, it is common practice to
represent the undirected edges in an MVR-CG with arcs ���� instead of lines −. Again,
MVR chain graphs produce a different set of independence models than AMP and
LWF chain graphs, and no interpretation subsumes the other.

A unified view

We will now attempt to give a unified definition of the factorization of a probability
distribution p according to a chain graph G, which generalizes the LWF, AMP and
MVR factorizations. This re-formulation extends the notion of closure graph that
was introduced for LWF chain graphs to AMP and MVR chain graphs. As we will see,
the difference between each factorization seems to come only from the differences
in the structure of these closure graphs, which in turn comes only from differences
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in the independence model I(G). Note that we give no formal proof of our claim,
and therefore the results we give here are presented as conjectures.

Given a chain graph G and a chain component K, every subset S Ď K defines a
closure graphclosure

graph
H(G, S), which is obtained as follows: i) take GK the induced subgraph

of G over K Y PAK; ii) remove any edge in GK between each pair of nodes in PAK;
iii) take H the undirected graph over S Y PAK that contains an edge between two
nodes Vi, Vj iff 〈Vi, Vj | (S Y PAK) \ {Vi, Vj}〉 
P I(GK); iv) remove any node in H
that is not connected to a node in S.

Def. 2.13
CG prob.

model

An CG model consists in a set of random variables V = {V1, . . . , Vn}, a chain graph
G = (V, E), and a set of parameters Θ. Together, G and Θ define a probability
distribution p over V which factorizes as

p(v) =
∏

KiPCcG

p(ki|paKi
),

where CcG is the set of all chain components in G, and for every subset S Ď Ki, the
conditional probability p(s|paKi

) factorizes as

p(s|paKi
) =

∏
CjPClH(G,S)

φj(cj),

where ClH(G,S Y PAKi
) is the set of all cliques in the closure graph H(G, S), and φj is a

positive function.

The first factorization is common to all chain graph interpretations, and can be seen
as a consequence of a recursive factorization over the chain components, similarly
to that of DAGs. The second factorization imposes a set of constraints on the
conditional probability distribution of each chain component given its parents, which
depends only on the structure of the closure graph H(G, S). This is where arises the
difference between each chain graph interpretation, as the structure of the closure
graph is given by the independence model I(G). We believe that the three following
conjectures hold. We do not have any formal proof for these, however we will
provide some motivational arguments.

Conj. 2.6 With G an LWF chain graph, Definition 2.13 reduces to Definition 2.8.

From the c-separation criterion, the closure graph H(G, S) is obtained as follows:
i) take H the induced subgraph of G over the node set S Y PAK; ii) add an edge
between each pair of nodes in PAK; iii) add an edge between each pair of nodes
that accepts a path in G made only of intermediate nodes in K \ S; iv) make each
edge undirected.
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(a) S = {C, D, E}
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C D E

(b) S = {C, D}
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C D E

(c) S = {C, E}

A B

C D E

(d) S = {D, E}

A B

C D E

(e) S = {C}

A B

C D E

(f) S = {D}

A B

C D E

(g) S = {E}

Fig. 2.10. The closure graphs under the LWF interpretation, for the chain component K = {C, D, E}
from Figure 2.9.

When S = K, the closure graph defined above results in the closure graph from
Definition 2.8. When S Ă K it appears that no additional constraint arises from the
factorization, so only the subset S = K may be considered. In the end we obtain the
LWF-CG factorization from Definition 2.8.

Conj. 2.7 With G an AMP chain graph, Definition 2.13 reduces to Definition 2.10.

From the p-separation criterion, the closure graph H(G, S) is obtained as follows:
i) take H the induced subgraph of G over the node set S Y PAS; ii) add an edge
between each pair of nodes in S if they accept a path in G made only of intermediate
nodes in K \ S; iii) for each clique C Ď S in H, add an edge between every pair
of nodes in PAC, and between every node in C and every node in PAC; iv) make
each edge undirected.

It appears that the conditional closure graph from Definition 2.10 matches the
induced subgraph over S of the closure graph H(G, S) (step ii). Moreover, for every
clique C P S in H, it appears that C Y PAC is also a clique (step iii), and for every
clique C P PAS it appears that C Y CHC is also a clique. Without loss of generality,
let us re-define the chain component factorization in Definition 2.13 with potentials
over maximal cliques, we obtain the AMP-CG factorization from Definition 2.10.

Conj. 2.8 With G an MVR chain graph, Definition 2.13 reduces to Definition 2.12.
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(a) S = {C, D, E}
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C D E

(b) S = {C, D}
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C D E

(c) S = {C, E}
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(d) S = {D, E}

A B

C D E

(e) S = {C}

A B

C D E

(f) S = {D}

A B

C D E

(g) S = {E}

Fig. 2.11. The closure graphs under the AMP interpretation, for the chain component K = {C, D, E}
from Figure 2.9.

From the m-separation criterion, the closure graph H(G, S) is obtained as follows:
i) take H the induced subgraph of G over the node set S Y PAS; ii) add an edge
between each pair of nodes in S if they accept a path in G made only of intermediate
nodes in S; iii) for each clique C P S in H, add an edge between every pair of nodes
in PAC, and between every node in C and every node in PAC; iv) make each edge
undirected.

Let us define HS the induced subgraph over S of the closure graph H(G, S). It
appears that the cliques in HS correspond to the maximal connected sets in the
induced subgraph GS from Definition 2.10 (step ii). Moreover, for each of the cliques
C P S in H, it appears that C Y PAC is also a clique (step iii), and for every clique
C P PAS it appears that C Y CHC is also a clique. Without loss of generality, let
us re-define the chain component factorization in Definition 2.13 with potentials
over maximal cliques. It appears that all these maximal cliques are mutually disjoint.
Because of that the clique potentials can be expressed as conditional probabilities,
and we obtain the MVR-CG factorization from Definition 2.12.

A fourth chain graph interpretation ?

According to Drton [Drt09], a fourth interpretation of chain graphs as independence
models exists, which is the dual of the AMP interpretation. To the best of our knowl-
edge, this fourth interpretation as not been studied yet in the literature. However, we
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(f) S = {D}
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(g) S = {E}

Fig. 2.12. The closure graphs under the MVR interpretation, for the chain component K = {C, D, E}
from Figure 2.9.

will give a possible separation criterion and factorization under this interpretation,
and conjecture that it is complete (the independence model is probabilistic, and
is a sufficient and necessary condition for the factorization). Let us call this new
family of models the Type 3 chain graph models (T3-CGs), in agreement with the
categorization in [Drt09].

The separation criterion for a T3 chain graph, which we call c3-separation, is based
on the notions of d-collider sections, which is that of collider sections in LWF-CGs,
and u-collider sections, which somewhat extends that of collider nodes in BGs. In a
T3 chain graph, a d-collider section

d-collider
section is any section ρ = (Vi, . . . , Vj) that follows the

following pattern in the walk: ��� ρ ���. Likewise, a u-collider sectionu-collider
section

is any section
that follows the following pattern: −ρ−. 2

Def. 2.14
T3-CG ind.

model

Given a T3-CG G, I(G) is the independence model such that a disjoint triplet 〈X, Y | Z〉
belongs to I(G) iff Z c3-separates X and Y in G, that is, every walk between a node in
X and a node in Y contains a non-collider section that has a node in Z, or a d-collider
section that has no node in Z, or a u-collider section that has a node not in Z.

From the c3-separation criterion, given a T3 chain graph G, a chain component K
and a subset S Ď K, the closure graph H(G, S) is obtained as follows: i) take H the
induced subgraph of G over the node set S Y PAK; ii) add an edge between each

2Note that since walk sections are maximal undirected sequences, a u-collider section can only appear
in a completely undirected walk, and consists in the entire walk expect for the first and last nodes.
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(f) S = {D}
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(g) S = {E}

Fig. 2.13. The closure graphs under our T3 interpretation, for the chain component K = {C, D, E}
from Figure 2.9.

pair of nodes in PAK; iii) add an edge between each pair of nodes in S that accepts
a path in G made only of intermediate nodes in S; iv) add an edge between each
node in S and each node in PAK that accepts a path in G made only of intermediate
nodes in K \ S; v) make each edge undirected.

The factorization of p according to a T3-CG follows from Definition 2.13. Again, we
give no formal proof that this new separation criterion for chain graphs corresponds
to the Type 3 interpretation from Drton [Drt09]. However, we found that it was
interesting to mention it, as it seems to complete nicely the family of chain graph
models. As for soundness, we propose the two following conjectures.

Conj. 2.9 With G a T3-CG, I(G) is a probabilistic independence model.

Conj. 2.10 With G a T3-CG, I(G) is an I-map for p iff p factorizes according to G.

We plan to answer Conjectures 2.9 and 2.10 in the near future. If these are an-
swered positively, then the above separation criterion could define a new family of
probabilistic graphical models based on chain graphs.

Discussion

To summarize, chain graphs were originally proposed as a new probabilistic graphical
model to unify and extend directed and undirected graphical models. However, it

2.2 Advanced graphical models 53



appears that three consistent chain graph interpretations exist, maybe even four.
The LWF and AMP chain graphs subsume both DAG and UG models, but not BG
models. On the other hand, MVR (and T3?) chain graphs subsume both DAG and
BG models, but not UG models. Moreover, no chain graph interpretation subsumes
another [SP15]. In the end, the so-called hybrid graphs suggested by Verma and
Pearl [VP88] appeared to yield richer but also much more complex models than
what was originally suggested.

To the best of our knowledge, no axiomatic characterization of chain graph models
in terms of conditional independence properties exists in the literature. However,
according to Sadeghi and Lauritzen [SL15] the independence model of an LWF, AMP
or MVR chain graph is always a compositional graphoid.

2.2.3 Mixed graphs

In this section, we dig further into advanced graphical models and briefly review
some important families of graphical models combining more than two types of
edges, i.e. mixed graph models.

To understand the motivation behind the models discussed in this section, let us
introduce the notions of marginal and conditional independence model, as defined
by Sadeghi [Sad12].

Marginal and conditional models

Def. 2.15 Consider an independence model I over a set V. For any subset M Ď V, the indepen-
dence model after marginalizationmarg. ind.

model
over M, denoted by I∅

M, is the subset of I whose
triples do not contain members of M, i.e.

I∅
M = {〈X, Y | Z〉 P I | (X Y Y Y Z) X M = ∅}.

For any subset C Ď V, the independence model after conditioningcond. ind.
model

on C, denoted by
IC

∅ , is

IC
∅ = {〈X, Y | Z〉 | 〈X, Y | Z Y C〉 P I and (X Y Y Y Z) X C = ∅}.

Combining these definitions, for disjoint subsets M and C of V, the independence model
after marginalization over M and conditioning on C is

IC
M = {〈X, Y | Z〉 | 〈X, Y | Z Y C〉 P I and (X Y Y Y Z) X(C Y M) = ∅}.
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One can observe that IC
M is an independence model over V \ (C Y M).

Let us now consider marginalization and conditioning for a probability distribution
p defined over V. The process of marginalizing out and conditioning on respectively
two distinct subsets M and C yields a new probability distribution p′ defined over
W = V \ (M Y C). The idea of marginalizing out M is quite straightforward. When
C = ∅, the resulting distribution is simply

p′(w) =
∑
m

p(w, m).

In this new distribution the variables in M are not observed, and are called latent
variableslatent

variables
. The idea of conditioning on C appears a little bit less intuitive. It consists

in conditioning p on a certain event that depends on C, then marginalizing out C.
When M = ∅, the resulting distribution can be expressed as

p′(w) =
∑

c
p(w|c)ps(c),

with ps any probability distribution over C, called the selection biasselection
bias

. The variables in
C are also called latent variables since they are not observed in p′. Typically, when
the selection bias is ps(c) = 1 for a particular value cs and 0 otherwise, the resulting
distribution is simply p′(w) = p(w|c = cs). When combining marginalization and
conditioning, the resulting distribution is

p′(w) =
∑
m

∑
c

p(w, m|c)ps(c).

It can be shown that if an independence model I is an I-map for a distribution p,
then IC

M is an I-map for the distribution p′ resulting from marginalizing out M and
conditioning on C under any selection bias.

Stability of graphical models

A family of graphical models is said stable under marginalization and conditioning
iff for every graph G of this family and every distinct subsets M and C of V, there
exists a graph G′ of the same family such that I(G)C

M = I(G′).

To illustrate the notion of stability, let us consider the families of graphical models
we have encountered so far. The family of UGs is known to be stable under both
marginalization and conditioning. For any UG G, it suffices to add an edge between

2.2 Advanced graphical models 55



every pair of nodes that are adjacent to a common node in M, and then remove the
nodes in M Y C to obtain the desired graph G′ (see Figure 2.14).

A

B C

D

(a) G1

A

B C

D

(b) G2, D marginalized out.

A

B C

D

(c) G3, D conditioned on.

Fig. 2.14. Three UGs G1, G2, G3 such that I(G2) = I(G1)∅
D and I(G3) = I(G1)D

∅ .

The family of BGs is also stable under marginalization and conditioning. For any BG
G, one can simply add an edge between every pair of nodes that are adjacent to a
common node in C, then remove the nodes in M Y C (see Figure 2.15).

A

B C

D

(a) G1

A

B C

D

(b) G2, D marginalized out.

A

B C

D

(c) G3, D conditioned on.

Fig. 2.15. Three BGs G1, G2, G3 such that I(G2) = I(G1)∅
D and I(G3) = I(G1)D

∅ .

The family of DAGs however, is stable neither under marginalization nor conditioning.
Consider the two DAGs in Figure 2.16, the independence model of the first DAG
after marginalizing out C can not be represented by any DAG, and neither can be
the independence model of the second DAG after conditioning on E.

A

B

C

D

E

(a) I(G)∅
C is not DAG-faithful.

A

B

C

D

E

(b) I(G)E
∅ is not DAG-faithful.

Fig. 2.16. Two DAGs which are not stable under conditioning and marginalization.

Regarding chain graphs, it is known that the family of LWF CGs is stable under
conditioning but not under marginalization [Sad16], while the family of MVR CGs is
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stable under marginalization but not under conditioning. As for the family of AMP
CGs, it seems that these are stable neither under marginalization nor conditioning.

Since several families of graphical models appear to be unstable under marginal-
ization or conditioning, a question arises naturally: can we find a "super"-family of
graphical model that captures these marginal and conditional independence models?
As we will see, this question was answered positively for DAGs, LWF CGs, and
possibly AMP CGs.

Ancestral graphs

According to [RS02], the problem of constructing graphical representations for
the independence structure of DAGs under marginalization and conditioning was
originally posed by Nanny Vermuth in 1994 in a lecture at CMU3 (Carnegie-Mellon
University). This led to the development of the so-called summary graphs (SGs)
by Wermuth et al. [WCP94] and Wermuth [Wer11], the ancestral graphs (AGs)
by Richardson and Spirtes [RS02] and the MC-graphs (MCGs) by Koster [Kos02].
All three families are based on mixed graphs with three types of edges: directed
���, undirected − and bi-directed ����, and are stable under marginalization and
conditioning. Roughly speaking, in such graphs the undirected edges are created
by conditioning upon collider nodes, whereas bi-directed edges are created by
marginalizing out non-collider nodes.

Interestingly, the separation criterion for the three families is the same [RS02]. It
relies on the notion of collider nodes, which is actually the same as the one for MVR
chain graphs if we consider the undirected edges in MVR-CGs as arcs ���� instead of
lines −. Within the context of MCGs, SGs and AGs, a collider nodecollider

node
in a walk is any

intermediate node Vi that follows one of the following patterns: ��� Vi ���, ��� Vi ����
or ���� Vi ����. The separation criterion for summary, ancestral and MC graphs is then
also called m-separation.

Def. 2.16
MCG-SG-AG

ind. model

Given a MCG, SG or AG G, I(G) is the independence model such that a disjoint triplet
〈X, Y | Z〉 belongs to I(G) iff Z m-separates X and Y in G, that is, every walk between
a node in X and a node in Y contains a non-collider node in Z, or a collider node that
is not in Z.

Because they share the same separation criterion, the only difference between MC,
summary and ancestral graph models comes from restrictions on the structure of the
graph G.

3Note that a similar idea is discussed in [VP90].
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(a) An MC graph.
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(b) A summary graph.

A

B

C

D

(c) An ancestral graph.

Fig. 2.17. Three mixed graphs which represent exactly the same independence model according to the
m-separation criterion.

An MC graphMC graph is a mixed graph with three types of edges (−, ���, ����), without any
additional constraints. An MC-graph may then contain loops, directed cycles, and
multiple edges. However, due to the m-separation criterion, only loops consisting
of undirected edges V1 − V1 matter in the graph, as well as only multiple edges
consisting in distinct edges (i.e. at most four edges V1 ��� V2, V1 ��� V2, V1 − V2 and
V1 ���� V2 between each pair of nodes).

A summary graphsummary
graph

is actually an MC graph with three additional constraints: i) no
loop; ii) no directed cycle; iii) the endpoints of an undirected edge − have no parent
or spouse node. Notice that, due to this last constraint, summary graphs can only
have multiple edges made of one directed and one bi-directed edge.

Finally, an ancestral graphancestral
graph

is a summary graph with one additional constraint: the
endpoints of a bi-directed edge ���� accept no directed path between them. As a
consequence, multiple edges are no more allowed in the graph, and ancestral graphs
are simple graphs.

As shown in [RS02], summary and ancestral graphs capture the same class of
independence models, and match exactly the class of independence models that
originate from a DAG after marginalization and conditioning. As for MC-graphs,
they capture a broader class of independence models, which may not correspond to
any DAG with marginalization and conditioning [RS02] (see Figure 2.18).

An important desirable property of graphical independence models, sometimes called
pairwise Markov propertypairwise

Markov
prop.

, is that the absence of an edge between two distinct nodes
always translates an independence relation, that is, if V1 and V2 are non-adjacent in
G then 〈V1, V2 | Z〉 P I(G) for some subset Z Ď V \ {V1, V2}. However, neither MC
graphs, summary graphs or ancestral graphs respect this property. See for example
Figure 2.17, in which A and C are not adjacent in any of the graphs, however
there is no subset of {B, D} that separates them. To solve this problem, Richardson
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A
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C

D

E

F

Fig. 2.18. An MC graph whose independence model I(G) does not corresponds to any summary or
ancestral graph model, and thereby to any conditional and marginal DAG model.

and Spirtes [RS02] introduces the family of maximal ancestral graphs (MAGs), i.e.
ancestral graphs that respect the pairwise Markov property, and shows that every
AG can be converted to a MAG without changing its independence model, simply by
adding bi-directed edges to the graph. For example, in Figure 2.17c it suffices to add
the edge A ���� C.

Richardson and Spirtes [RS02] shows that ancestral graph models, and therefore
summary graph models, are probabilistic, and gives a parameterization of MAG
models in the Gaussian case (i.e. when p is assumed to obey a multivariate Gaussian
distribution). On the other hand, MC-graph models were not shown to be probabilis-
tic. To the best of our knowledge, no general factorization rule was given for any of
these models. Nonetheless, Koster [Kos02] shows that MCG models (and therefore
SG and AG models) are compositional graphoids.

To summarize, MCGs subsume AGs and SGs, which in turn subsume DAGs, UGs,
BGs and MVR CGs. Maximal ancestral graph (MAG) models appear to exhibit many
interesting properties, as they rely on simple graphs, they are probabilistic, and they
respect a basic intuitive interpretation with pairwise Markov property. Nonetheless,
MAGs (and SGs) do not subsume LWF or AMP chain graph models, as it happens
that some of these do not correspond to any conditional and marginal DAG model.
See for example the chain graph in Figure 2.9.

Anterial graphs

Sadeghi [Sad16] proposed the family of chain mixed graphs (CMGs), with directed
���, undirected − and bi-directed ���� edges, to capture the marginal and conditional
independence models of LWF-CGs. The separation criterion for CMGs, which we call
cm-separation, extends that of LWF and MVR CGs. The notion of a section ρ is that
of LWF-CGs, and the notion of a collider section is extended to include patterns from
MVR-CGs: ��� ρ ���� and ���� ρ ����.
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Def. 2.17
CMG ind.

model

Given a CMG G, I(G) is the independence model such that a disjoint triplet 〈X, Y | Z〉
belongs to I(G) iff Z cm-separates X and Y in G, that is, every walk between a node in
X and a node in Y contains a non-collider section that has a node in Z, or a collider
section that has no node in Z.

Because the separation criterion for CMGs generalizes the separation criterion for
LWF-CGs, the difference between CMG and LWF-CG models comes from restrictions
on the structure of the graph G.

A chain mixed graphchain mixed
graph

is a mixed graph with three types of edges (−, ���, ����) that
respects two constraints: i) no loops; ii) no semi-directed cycles unless they contain
an arc ����. Note that, due these constraints, CMGs can have multiple edges consisting
in arcs and arrows (V1 ���� V2 and V1 ��� V2) or arcs and lines (V1 ���� V2 and V1 − V2).
Moreover, due to the cm-separation criterion, only multiple edges consisting in
distinct edges matter in the graph.

A

B

C

D

(a) A chain mixed graph.

A

B

C

D

(b) An anterial graph.

Fig. 2.19. Two mixed graphs which represent exactly the same independence model according to the
cm-separation criterion.

The resulting independence model for CMGs is stable under marginalization and
conditioning, and captures LWF-CG and MVR-CG models as a subclass. As a result,
CMG models capture the conditional and marginal models of LWF-CGs, MVR-CGs,
DAGs, UGs and BGs, and thereby subsume both AGs (which correspond exactly to
marginal and conditional DAG models).

However, CMGs may have multiple edges, and do not respect the pairwise Markov
property. Sadeghi [Sad16] introduces the so-called anterial graphs (AnGs) which
capture exactly the same independence models as CMGs.

An anterial graphanterial
graph

is a chain mixed graph with one additional constraint: the end-
points of a bi-directed edge ���� accept neither a semi-directed path or an undirected
path (only lines −) between them. As a result, anterial graphs are simple graphs.

It appears that AnGs share the same relationship with CMGs as AGs do with SGs,
that is, they capture the same class of independence models with a simpler structure.
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However, AnGs do not respect the pairwise Markov property, but it is argued in
[Sad16] that it is always possible to derive a maximal anterial graph (MAnG) from
an AnG that encodes the same independence model, similarly to MAGs from AGs.
Finally, MAnG models were shown to be compositional graphoids, but it was not
proved whether they are probabilistic models or not.

MAMP chain graphs

Peña [Peñ14] proposed the family of marginal AMP chain graphs (MAMP-CGs), with
directed ���, undirected − and bi-directed ���� edges, which subsumes both AMP and
MVR chain graph models. The separation criterion for MAMP-CGs, which we call
pm-separation, extends that of AMP and MVR CGs. The notion of a collider node
includes patterns from both interpretations, that is, a collider node in a walk is any
intermediate node Vi that follows one of the following patterns: ��� Vi ���, ��� Vi ����,
��� Vi−, ���� Vi ���� or ���� Vi−.

Def. 2.18
MAMP-CG
ind. model

Given an MAMP-CG G, I(G) is the independence model such that a disjoint triplet
〈X, Y | Z〉 belongs to I(G) iff Z pm-separates X and Y in G, that is, every walk
between a node in X and a node in Y contains a non-collider node in Z, or a collider
node that is not in Z.

A marginal AMP chain graphMAMP chain
graph

is a mixed graph with three types of edges (−, ���, ����)
that respects several constraints: i) no loops; ii) no multiple edges; iii) no semi-
directed cycles4; iv) the endpoints of a bi-directed edge ���� accept no undirected
path (only lines −) between them; v) if a node V is the endpoint of a bi-directed ����
edge then NEV forms a clique.

The resulting independence model for MAMP-CGs captures AMP-CG and MVR-CG
models as a subclass, but is not stable under marginalization and conditioning. As a
result, MAMP-CG models subsume DAGs, UGs and BGs, but not AGs or AnGs. Note
that AGs do not subsume MAMP-CGs either, since there are AMP-CGs that do not
correspond to any AG.

Finally, Peña [Peñ14] shows that MAMP chain graphs are probabilistic models, and
are compositional graphoids that satisfy the weak transitivity property. Another
interesting property of MAMP-CGs is that they are simple graphs and they respect
the pairwise Markov property. The general factorization of MAMP-CG models is not
given.

4Recall that in the context of mixed graphs a semi-directed cycle may contain undirected − and/or
bi-directed ���� edges.
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Acyclic graphs

Recently, Sadeghi and Lauritzen [SL15] proposed the family of acyclic graphs (ACGs),
in an attempt to unify all know graphical representations of independence models to
date. Quoting the authors, "the idea is to provide one type of edge for every type
of chain graph discussed in the literature". ACGs have four types of edges, namely
arrows ���, lines −, arcs ���� and dashes ���. The lines, arcs and dashes respectively
correspond to the undirected edges of LWF-CGs, MVR-CGs and AMP-CGs. We call
the separation criterion for ACGs cpm-separation. The notion of a section ρ is that of
LWF-CGs, that is, a maximal intermediate subwalk made of lines − only. The notion
of a collider section mixes up patterns from all the chain graph interpretations, that
is: ��� ρ ���, ��� ρ ����, ��� ρ ���, ���� ρ ���� or ���� ρ ���.

Def. 2.19
ACG ind.

model

Given an ACG G, I(G) is the independence model such that a disjoint triplet 〈X, Y | Z〉
belongs to I(G) iff Z cpm-separates X and Y in G, that is, every walk between a node
in X and a node in Y contains a non-collider section that has a node in Z, or a collider
section that has no node in Z.

An acyclic graphacyclic
graph

is a mixed graph with four types of edges (���, −, ����, ���) that
respects two constraints: i) no loops; ii) no semi-directed cycles unless they contain
an arc ���� or a dash ���. Notice that, due to this last constraint, acyclic graphs can
not have multiple edges with an arrow and a line, or with two arrows in opposite
directions. Any other combination of edges is allowed though.

According to Sadeghi and Lauritzen [SL15], acyclic graphs generalize all graphical
models discussed in the literature, except MC graphs. It has been shown that ACGs
are compositional graphoids, and therefore all graphical models it subsumes are
compositional graphoids. However, several properties of ACGs are still to be studied.
Clearly ACGs do not respect the pairwise Markov property, and it is not known if
and how an ACG can be turned into a maximal ACG. Moreover, ACGs have not yet
been shown to be probabilistic, nor stable under marginalization and conditioning.
And finally, no general factorization rule has been given for ACGs.

2.3 Discussion

The study of advanced graphical models is still an active area of research today,
with a lot of different families of models present in the literature. Obviously our
state-of-the-art does not cover all families of PGMs proposed so far, but we hope it
gives a fair overview of the last developments and the current trends. Among the
families of PGMs we did not cover, we may cite the acyclic directed mixed graphs
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(ADMGs) [Ric03] which appear to be summary graphs without lines, or the loopless
mixed graphs (LMGs) and ribbonless graphs (RGs) [Sad13; SL14] which appear to
capture the same independence models as MC graphs. Let us now summarize our
state-of-the art in Figure 2.20 and Table 2.8.

In Figure 2.20, we present a hierarchy of the different families of PGMs that we
have encountered so far, which corresponds to a partial ordering of these families
by set inclusion with respect to the class of independence models they represent.
Families that capture the same class of independence models are grouped together
(e.g. chain mixed graphs and anterior graphs). A deeper study of the intersection
between several of these families can be found in [Sad11; SP15].

UG DAG BG

AMP-CG LWF-CG MVR-CG T3-CG ?

MAMP-CG SG / AG / MAG

CMG / AnG MCG

ACG

Fig. 2.20. Hierarchy of PGM families by order of inclusion (in terms of independence model classes).

2.3.1 Trends

Advanced PGMs are much less popular and have known fewer practical applications
than classical PGMs, for two reasons. The first obvious reason is that increased
expressive power of advanced PGMs comes at the price of an increased complexity,
both to understand the underlying independence model and to exploit the resulting
factorization of p. The second reason is that the field is still very active as we have
seen, and current developments are mainly focused on improving the theoretical
properties of the structure of these models, without necessarily providing a practical
parameterization.

In Table 2.8, we present a (non-exhaustive) list of properties that have been estab-
lished for each of these families. From left to right, these properties are formulated
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as answers to the following questions: i) does every graph yields a probabilistic inde-
pendence model?; ii) is the family stable under marginalization and conditioning?;
iii) is every graph maximal (i.e. it respects the pairwise Markov property)?; iv) if
given, when does the factorization of p characterize the independence model (as an
I-map)?; and v) are the independence models characterized by a finite set of axioms
(conditional independence properties) ? Questions that have not been answered yet
are assigned a question mark (?) in the table.

Tab. 2.8. A list of properties exhibited by the different families of PGMs. *See [SL15].

probabilistic stable maximal I-map ⇐⇒ fact. axiom. charac.

UG yes yes yes p > 0 yes
BG yes yes yes any p ?

DAG yes no yes any p no

LWF-CG yes no yes p > 0 ?
AMP-CG yes no yes p > 0 ?
MVR-CG yes no yes any p ?

MAMP-CG yes no yes ? ?
MAG yes yes yes p Gaussian ?
AnG ? yes ? ? ?
MCG ? yes no∗ ? ?
ACG ? ? no∗ ? ?

If we look at the early development of probabilistic graphical models (e.g. the
Ising model [Isi25]), we observe that it was factorization-driven, that is, a practical
factorization of p over a graph led to the study of the independence model encoded
in the graph. In the late development of advanced graphical models, it seems that the
trend is reversed, that is, new graphical representations are developed so that they
exhibit interesting properties as independence models, while a practical factorization
of p seems to be of a second interest, as shown in Table 2.8.

Finally, an interesting property not shown in Table 2.8 is that all the independence
models captured by these PGMs are compositional graphoids. The composition
property is actually pretty simple to explain, and is inherent to definition of sep-
aration between two sets of nodes. Indeed, in all these models set separation is
defined as the result of pairwise separation between all pairs of elementary subsets
(nodes) of these sets, This necessarily results in the composition property being
respected. The necessity of intersection appears less obvious, but also seems to be a
consequence of pairwise separation in graphs. See [Kos02][Proposition 2.10] and
[SL15][Theorem 1].

From these observations, two interesting questions arise: i) is it possible to define a
probabilistic graphical model that is not a compositional graphoid? and ii) because
advanced PGMs are more and more expressive, but still seem restricted to composi-
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tional graphoids, is it possible to define a PGM that matches exactly the intersection
between probabilistic independence models and compositional graphoids? (See
Figure 2.7).

2.3.2 Limitations

Graphs vs probabilistic independence models

A first limitation of PGMs comes from their restricted expressiveness as indepen-
dence models. Studeny [Stu05][3.6] raises the question of how many probabilistic
independence models can be described by graphs. We report his results in Table 2.9.
As expected, chain graphs are able to capture more independence models than
DAGs, which in turn capture more independence models than UGs. However, with
only 3 variables these PGMs can capture at most 50% of all possible independence
models, and with 4 variables the gap explodes with only 1% of models covered.
These numbers provide a strong argument to motivate the development of PGMs
with an increased expressive power. But still, Studeny argues that no sufficiently
wide class of graphs could possibly cure the problem. Consider a graph with n nodes
and m types of edges, in which loops and multiple edges are allowed. The number
of possible edges is then m × n2, and the number of distinct graphs is 2mn2

, the
size of the power set of these edges. On the other hand, the number of distinct
independence models induced by discrete probability measures is lower bounded by
22[n/2]

when n > 2. With m fixed, the number of distinct graphical structures grows
at an exponential speed of a polynomial of n, while the number of independence
models grows at an exponential speed of an exponent of n. In other words, to solve
this problem either graphical models should include additional nodes or hyper-edges,
or non-graphical independence models should be developed. The latter approach
is discussed in [Stu05], who proposes the concept of structural imsets to represent
independence models.

Tab. 2.9. The number of independence models that can be captured by undirected graphs (UG),
directed acyclic graphs (DAG), chain graphs under the LWF interpretation (LWF-CG), and
discrete probability distributions (p), with respect to the number of random variables in V.
Reproduced from [Stu05].

|V| = 2 |V| = 3 |V| = 4 |V| = 5
UG 2 8 64 1024

DAG 2 11 185 8782
LWF-CG 2 11 200 11519

p 2 22 18300 ?
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Independence vs factorization constraints

A second limitation of PGMs comes from the restricted expressiveness of indepen-
dence models themselves. Indeed, an independence model I corresponds to a
factorization of p, but not every factorization of p can be induced by an indepen-
dence model. Consider the two following factorizations: p(a, b, c) = φ(a, b, c) and
p(a, b, c) = φ(a, b)φ(b, c)φ(c, a). Both these distributions are faithful to the same
independence model, which corresponds to the UG (c) in Figure 2.21. Unlike the
first one, the second factorization simplifies the expression of p and it would be
useful to model it. However, it does not induce any independence relation between
A, B and C and thus can not be induced by any independence model over A, B, C,
graphical or not. Nonetheless, in this particular example it is possible to express the
desired factorization with an "augmented" PGM, using latent variables. From the UG
in (b), we obtain the desired factorization of p(a, b, c) is obtained after marginalizing
out H,

p(a, b, c) =
∑

h

p(a, b, c, h) = φ(a, b)φ(a, c)
∑

h

φ(c, h)φ(b, h) = φ(a, b)φ(a, c)φ(b, c).

From the UG in (a) however, the marginal probability p(a, b, c) does not factorize,

p(a, b, c) =
∑

h

p(a, b, c, h) =
∑

h

φ(a, h)φ(b, h)φ(c, h) = φ(a, b, c).

Interestingly, the additional hidden nodes in the graph can be seen as hyper-edges
(i.e. edges between more than two nodes), which was suggested as a solution for
solving the previous limitation of PGMs.

A

BC

H

(a) G1

A

BC

H

(b) G2

A

B C

(c) G3

Fig. 2.21. Three UGs G1, G2, G3 such that I(G1)∅
H = I(G2)∅

H = I(G3), that is, the independence
model of the marginal distribution p(a, b, c) is the same. Still, G2 induces the factorization
p(a, b, c) = φ1(a, b)φ2(b, c)φ3(c, a), while G1 does not.

This idea of modeling the relations between the variables of interest with hidden
variables is exploited for example within Boltzmann machines, or their simpler
counterpart the restricted Boltzmann machines (RBMs) which impose independence
constraints in the global distribution p(v, h) of the hidden and non-hidden vari-
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ables, without any independence constraint on the marginal distribution p(v) (See
Figure 2.22).

V1 V2

H1 H2

(a) G1 a Boltzmann machine

V1 V2

H1 H2

(b) G2 a restricted
Boltzmann machine

Fig. 2.22. Two UGs G1, G2 such that I(G1) 
= I(G2) but I(G1)∅
H = I(G2)∅

H .

Contextual independence relations

A third limitation of PGMs is that they do not model contextual independence
relations. Recall that in Chapter 1 we defined conditional independence between
random variables as p(x, y, z)p(z) = p(x, z)p(y, z), for every value of X, Y and Z.
However, it may be that two random variables are not independent in general, but
only in some sub-space of the universe. For example, consider the discrete probability
distribution in Table 2.10. The two variables A and B are not independent in general,
however they are independent in the particular sub-space where a P {a3, a4}. If we
go back to the definition of independence between events, this may be expressed
as either A = a ⊥⊥ B = b for every a P {a3, a4} and b P B, or A = a ⊥⊥ B = b | A P
{a3, a4} for every a P A and b P B.

Tab. 2.10. The joint distribution p(a, b) of two discrete random variables A and B. In general the two
variables are dependent, however they are independent in the context where A P {a3, a4}.

B
b1 b2

A
a1 .10 .05
a2 .10 .15
a3 .10 .20
a4 .10 .20

Again, in this particular case we may introduce a hidden variable H such that H = A

when A P {a1, a2}, and H = c a constant value otherwise. In that case the UG
A − H − B can represent the contextual independence relation with A ⊥⊥ B | H.
Note that there exists probabilistic models, also based on graphs, which are able
to represent such contextual independence relations. These are for example sum-
product networks (SPNs) [PD11], which are equivalent to BNs with hidden variables
and compact probability tables [ZMP15], discussed in Section 4.3.5. In both cases

2.3 Discussion 67



these graphical representation involve much more nodes that the number of variables
|V| in the model.

A-priori on the universe

Finally, one last limitation of PGMs is that their ability to represent independence
relations in p is highly related to how the sample space Ω is represented. Consider
the extreme situation where only one random variable represents the universe, i.e.
X = Ω. Obviously the only independence model for p is I = ∅, not very useful.
For an independence model to exist, it requires several random variables, or more
precisely a multi-dimensional representation of the universe. Most of the time these
dimensions come naturally because they are meaningful to us, i.e. we may describe a
car with its color, its engine capacity, its size, the number of seats etc. But the way we
define these random variables is not unique and arbitrary. For example, what about
the color of a car? Such an information is commonly represented as a multi-valued
discrete variable (white, red, blue etc.), or several binary variables. But we may
also represent it as an ordered variable, by arranging the colors from the lightest to
the darkest. Or, we may even represent it with three continuous variables, i.e. the
RGB combination corresponding to the color. Each of these representations may not
be the most appropriate one to represent the sample space in every situation, and
choosing a particular representation will necessarily have an impact on how we will
model p.

Suppose you are given two random variables X and Y , sampled according to the
probability distribution in Figure 2.23a. Obviously these variables are dependent,
and a standard PGM will not induce any factorization of p. But if you could rotate
your representation of the sample space as in Figure 2.23b, then you would find two
independent dimensions X ′ and Y ′, with a factorization of p into p(x′)p(y′). In this
simple example a linear transformation of the sample space can exhibit an interesting
representation of p, but in general non-linear transformations will also be helpful.
This problem of finding a good representation of the sample space is a recurrent
issue in machine learning, and is sometimes referred to as feature extraction, feature
construction, or representation learning.

In the literature of PGMs the representation problem is often skipped, and people
tend to assume that the features of interest are adequate to model p. Sometimes it is
also desirable that the representation of the universe is meaningful to humans, so
that the structure of the PGM is readable. For example we may collect data samples
from a population study, and then learn a PGM structure to uncover the relationships
between some variable of interests (e.g. in genomics, social sciences etc.). However,
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X
Y

p

(a) X and Y are dependent.

X ′

Y ′

p

(b) X ′ and Y ′ are independent.

Fig. 2.23. The same probability distribution p seen from two different representations of the sample
space.

machine learning tasks in general require an accurate and efficient modeling of p,
and the way we represent ourselves the universe, i.e. the data samples, is a huge
a-priori that the model has to deal with. Since every independence model is tightly
related to the underlying representation of the sample space, so are probabilistic
graphical models. This is in our view the major limitation of classical probabilistic
graphical models in the field of machine learning.
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3Bayesian network structure
learning

„There is no such thing as a true distribution,
[. . . ] we only have the data.

— Peter D. Grünwald
2007

We now turn to the problem of learning PGM structures from data, and more
particularly Bayesian network structures. Learning the structure of a Bayesian
network from data is a hard problem in general [CHM04]. In the literature, two main
approaches to structure learning are distinguished, namely the score-based approach
which iterates over the space of all possible graphs to find the one that maximizes a
given score, and the constraint-based approach which reads structural constraints
(i.e., independence relations) from the data and builds a graph that respects these
constraints. Each of these approaches having its own flaws, recently a new hybrid
approach that combines both constraint-based and score-based methods has emerged,
which appear to capture the best of both worlds without the disadvantages. In the
following we will introduce formally the problem of Bayesian network structure
learning, discuss the main score-based, constraint-based and hybrid approaches
to Bayesian network structure learning. Finally we will present an experimental
comparison of two algorithms: the state-of-the art hybrid algorithm MMHC from
[TBA06] and a new hybrid algorithm H2PC [GAE12; GAE14], which constitutes our
first major contribution to the field.

3.1 Motivation

Formally, given a set of random variables V = {V1, . . . , Vn} and a set of observations
D = {v(j)}s

j=1 drawn independently from p(v), PGM structure learning consists in
finding a graph G from a specific model family (Markov networks, Bayesian networks,
chain graphs. . . ) for which there exists a parameterization Θ that encodes the joint
distribution p(v). Since a complete graph always respects this condition (i.e., it
can encode any distribution), a second desired property of G is that the resulting
model should be of lowest complexity. This preference criterion is often implicit in
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the structure learning literature, and does not have a unique definition. In terms of
independence models, the above formulation often translates into finding a perfect
map of p when such a graph exists, and a minimal independence map of p otherwise
(where minimal needs further definition).

A first motivation for PGM structure learning comes from the field of knowledge
discovery from databases (KDD), where statistical models can be used as a tool for
extracting meaningful information about a system of interest. Indeed, PGMs provide
an intuitive graphical representation of the (in)dependence structure between the
variables of the system, which an expert may be able to interpret and gain some
insights about the underlying system. Discovering such a representation can be
particularly useful in empirical studies where the variables of interest have a specific
meaning, e.g., social characteristics in econometrics, nutrient measurements in
agronomy, sensor levels in process control, genetic indicators in biology, and so on.

A second motivation comes from the field of inductive reasoning, where statistical
models can be used for answering probabilistic queries such as arg maxy p(y|x).
In the general case, modeling a complex multivariate distribution naively requires
an exponential number of parameters with respect to the number of variables,
which leads to intractable models. A practical approach to deal with this problem
is to consider tractable models only, by imposing arbitrary constraints on p (e.g.,
pairwise interactions only, tree structures, specific parametric families, etc.). Still,
these constraints may be too restrictive, resulting in approximate statistical models.
Structure learning offers a principled solution to consider only structural constraints
that respect the underlying data distribution (i.e., an independence maps). It
is not guaranteed however that these will result in a tractable statistical model.
Nevertheless, even in situations where the learned structure is intractable, gaining
some insight about the actual independence structure of p can be useful to guide the
choice of a tractable model.

For simplicity, note that in the following we will consider only Bayesian network
structure learning in the discrete setting, i.e., with V = {V1, . . . , Vn} a set of discrete
random variables. Still, the main ideas we discuss here remain valid in the continuous
setting, for which most of the presented approaches offer a direct extension.
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3.2 The score-based approach

Score-based approaches cast the PGM structure learning problem as an optimization
problem. Formally, given a scoring criterion S, the optimal graph G� is defined as
the highest scoring structure1,

G� = arg max
G

S(G, D). (3.1)

The process of solving (3.1) can be seen as a search over the space of all possible
graphs, which gave rise to the search-and-scoresearch-and-

score
terminology. The first problem that

arises from this formulation is: how to compute S(G, D)? Obviously, we would
like the score to strongly penalize graphical structures which do not respect the
independence model of the data (I-map requirement). But we also would like to
favor sparse structures over highly connected ones, when both are equally able to
model the data distribution (D-map wish). Also, it may be desirable that the scoring
function respects some properties, such as consistencyconsistent :

I(G2) Ă I(G1) Ď I(p) =⇒ lim
|D|→∞

S(G1, D) > lim
|D|→∞

S(G2, D), and

I(p) Ď I(G1) Ă I(G2) =⇒ lim
|D|→∞

S(G1, D) > lim
|D|→∞

S(G2, D),

or equivalenceequivalent :
I(G1) = I(G2) =⇒ S(G1, D) = S(G2, D).

Another interesting property is decomposabilitydecompos-
able

, which imposes that the scoring
function decomposes as a sum of local scores for each node and its parents:

S(G, D) =
n∑

i=1
S(Vi, PAVi , D).

In the following we will present two families of scoring functions, respectively based
on a Bayesian and an information-theoretic criterion. We will then review some
search procedures which are typically used to solve the optimization problem in
(3.1).

1Note that the optimal graph G� is not necessarily unique, thus the P symbol should be preferred to
= in (3.1). For simplicity, we will omit this ambiguity and always refer to the optimal graph.
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3.2.1 Bayesian scores

In order to derive a proper Bayesian scoring function, we may re-express Equation
(3.1) as a MAP estimation problem,

G� = arg max
G

p(G|D), (3.2)

where p(G|D) is the posterior probability of the graphical structure G given the data
set D. Recall that D is fixed and thus p(D) is a constant term, under Bayes’ law we
have p(G|D) = p(G)p(D|G)/p(D) and thus

p(G|D) ∝ p(G)p(D|G). (3.3)

The scoring function then decomposes into an a-priori on G and a likelihood term
p(D|G), i.e., the probability of obtaining the observed data set from a probabilistic
model with graphical structure G. We may then introduce the model parameters Θ,
and express the likelihood term as a proper marginalization,

p(D|G) =
∫

Θ
p(D, Θ|G)dΘ. (3.4)

We may now decompose further the inner term into p(Θ|G)p(D|G, Θ). Because D is
made of i.i.d. (independent and identically distributed) samples, we obtain

G� = arg max
G

p(G)
∫

Θ
p(Θ|G)

∏
vPD

p(v|G, Θ)dΘ.

The probability of a sample p(v|G, Θ) can be induced from the model, and what
remains to be defined are an a-priori on the structures, p(G), and an a-priori on the
parameters given a particular structure, p(Θ|G). While the a-priori on the structure
can be chosen arbitrarily, for practical considerations the a-priori on the parameters
must make the integration

∫
Θ tractable.

Bayesian Dirichlet family

In the discrete case, a convenient choice of prior is the Dirichlet distribution, which
conjugates nicely with multinomial probability distributions. Such a prior is used in
the so-called family of Bayesian DirichletBD (BD) scores [HGC95], based on a factorized
Dirichlet distribution of the parameters. Formally, the global distribution p(Θ|G) is
assumed to factorize over each node Vi of the graph,

p(Θ|G) =
n∏

i=1
p(Θi|G),
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where Θi is the set of parameters specific to the conditional probability table of
Vi. Each of these local distributions is then assumed to factorize further over each
possible instantiation the parents of Vi, that is,

p(Θi|G) =
qi∏

j=1
p(Θi,j |G),

where qi denotes the number of possible instantiations of PAVi , and Θi,j is the set of
parameters specific to the conditional probability distribution of Vi when its parents
take their j-th value. Finally, each of these local, context-specific distributions is
expressed as a Dirichlet distribution parameterized by {αi,j,k}ri

k=1,

p(Θi,j |G) = Γ(∑ri
k=1 αi,j,k)∏ri

k=1 Γ(αi,j,k)

ri∏
k=1

θ
αi,j,k−1
i,j,k ,

where Γ is the gamma function, ri denotes the number of possible instantiations
of Vi, and θi,j,k is the probability that Vi takes its k-th value when its parents take
their j-th value. Because this Dirichlet prior conjugates nicely with multinomial
distributions, marginalizing out Θ in (3.4) results in

p(D|G) =
n∏

i=1

qi∏
j=1

(
Γ(αi,j)

Γ(si,j + αi,j)

ri∏
k=1

Γ(si,j,k + αi,j,k)
Γ(αi,j,k)

)
, (3.5)

where si,j,k counts the number of samples in D where the variable Vi takes its k-th
value while its parents take their j-th value, si,j = ∑

k si,j,k and αi,j = ∑
k αi,j,k.

Finally, (3.3) is turned into a logarithmic score log p(D|G)+log p(G), which preserves
the scoring order while turning the multiple products in (3.5) into convenient
summations,

SBD(G, D) =
n∑

i=1

qi∑
j=1

(
log Γ(αi,j)

Γ(si,j + αi,j)

ri∑
k=1

log Γ(si,j,k + αi,j,k)
Γ(αi,j,k)

)
+ log p(G).

Such a scoring function has the desirable property that it is decomposable, i.e., if
one changes the parent set of a single node in G, then the score of the new graph G′

needs not be re-computed entirely, instead only the local term that corresponding
that node must be updated.

K2

In order for the BD score to be used in practice, one needs to explicitly define the
parameters of each of the Dirichlet prior. One common choice is the non-informative
parameter αi,j,k = 1 everywhere, in which case the Dirichlet boils down to a uniform
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Fig. 3.1. Shape of the BDeu prior for a binary variable Vi with no parents (ri = 2, qi = 1, α = s′/2),
with different imaginary sample sizes. The probability distribution p(vi) resumes to a single
parameter θ = p(vi = 1). The BDeu prior is distributed symmetrically around the uniform
distribution θ = 0.5, and concentrates either towards it when s′ < riqi, or towards the
deterministic distributions θ = 0, θ = 1, when s′ > riqi.

prior. Such a parameterization is commonly referred to as the K2K2 score introduced
by Cooper and Herskovits [CH91], whose expression simplifies to

SK2(G, D) =
n∑

i=1

qi∑
j=1

(
log (ri − 1)!

(si,j + ri − 1)!

ri∑
k=1

log si,j,k!
)

+ log p(G).

BDeu

Another common choice of parameters is αi,j,k = s′/(qiri), proposed in [Bun91],
which results in the so-called BDeuBDeu score,

SBDeu(G, D) =
n∑

i=1

qi∑
j=1

⎛
⎝log

Γ( s′
qi

)
Γ(si,j + s′

qi
)

ri∑
k=1

log
Γ(si,j,k + s′

qiri
)

Γ( s′
qiri

)

⎞
⎠ + log p(G).

As a result, BDeu requires a single parameter, s′, called the imaginary sample size.
The under scripts in BDeu stand for equivalent and uniform. Indeed, the equivalence
property is guaranteed with BDeu, i.e. two graphs with the same independence
model are always given the same score, which is not necessarily true with other BD
scores such as K2. On the other hand, uniform refers to the shape of the resulting
Dirichlet distributions, whose density is symmetrically distributed around uniform
Θi,j values, i.e. p(vi|paVi

, G) uniform. The imaginary sample size parameter s′ then
expresses how the prior concentrates towards or steps aside from this point, with
p(vi|paVi

, G) more likely uniform when s′
qiri

> 1, more likely deterministic when
s′

qiri
< 1, and equally likely when s′

qiri
= 1, as illustrated in Figure 3.1. As a result,

BDeu appears to be rather sensitive to the s′ parameter.
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Discussion

While this Bayesian formulation of a scoring metric is principled and allows to easily
integrate any prior on the graphical structures, in practice a non-informative uniform
prior is almost always used for p(G). An interesting question is then: how can
BD scores favor sparse structures over complex ones, given that a uniform prior is
given to every possible structure? If we consider the K2 score, the situation is even
more paradoxical: a uniform prior is used for p(G), as well as a uniform prior for
every parameterization of the graph, p(Θ|G). And yet the K2 score favors sparse
structures, as shown in [CH91]. The explanation to this counter-intuitive effect is
the following: K2 does not give a uniform prior over p(G, Θ), because Θ implicitly
depends on G. Consider Θ not as a set of parameters, but rather as the resulting
probability distribution. Clearly, with G1 and G2 two graphs such that I(G2) Ă I(G1),
the denser graph G2 can represent a broader class of probability distributions than G1.
Therefore, when Θ can be encoded both by G1 and G2 then p(Θ|G1) will be greater
than p(Θ|G2) with uniform priors, simply because Θ is one among the set of possible
parameterizations for G1, and one among a larger set for G2. Therefore, a side-effect
of the K2 prior is that a sparse structure will be preferred over a denser one, if both
are equally able to encode the data distribution. A second side-effect, pointed out
in [Aye94], is that the K2 score is not equivalent in term of independence models,
given two graphs such that I(G1) = I(G2), the structure that encodes the underlying
distribution with the denser parameterization (i.e. non-deterministic probability
tables) will always be preferred. For example, with A and B two random variables
such that A is deterministic for B but B is not for A, the graph B ��� A will be
preferred by K2 over the graph A ��� B.

Note that both K2 and BDeu are decomposable and consistent scoring functions,
though only BDeu is score-equivalent. Therefore BDeu is almost always favored in
practice, despite its sensitivity to the choice of α.

3.2.2 Information-theoretic scores

The basic idea behind information-theoretic scores is to formulate the structure
learning problem as a data compression problem, based on the idea that the more
the data is compressed, the more regularities have been found. Formally, given a
hypothesis space H, the Minimum Description Length (MDL) [Ris78] of a data set D
is

L(D) = min
HPH

L(H) + L(D|H),

where L(H) measures the length of the shortest sequence for describing H, and
L(D|H) the length of the shortest sequence for describing D under hypothesis H.
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The MDL principle offers a natural protection against overfitting, the best hypothesis
for describing the data being the one that reaches the optimal balance between
model complexity and data compression [Grü07]. Interestingly, finding H that
minimizes L(H) + L(D|H) can be interpreted as a MAP inference problem over
p(H|D) ∝ p(H)p(D|H), where the hypothesis complexity defines a particular prior
distribution p(H) = 2−L(H) (equivalently L(H) = − log p(H))2 and the data com-
plexity given the hypothesis defines a likelihood distribution p(D|H) = 2−L(D|H)

(equivalently L(D|H) = − log p(D|H)). While in a Bayesian setting the prior distribu-
tion corresponds to a prior belief based on expert knowledge, in MDL it corresponds
to a complexity measure of the hypothesis, which favors simple ones over complex
ones according to Occam’s razor principle. The main difficulty is then: how to define
the complexity of a hypothesis?

In the context of probabilistic graphical models our hypotheses take the form H =
(G, Θ). Therefore, the best model for describing the data is given by

(G, Θ)� = arg min
G,Θ

L(G, Θ) + L(D|G, Θ), (3.6)

where L(G, Θ) measures the length of the shortest sequence (in bits) required to
describe the model structure and parameters, and L(D|G, Θ) that for describing
the data set given the model. According to information theory, the minimum
number of bits required to describe an i.i.d. data set with a probabilistic model is
− log p(D|G, Θ), a.k.a. the negative log-likelihood of the data. On the other hand, the
minimum number of bits required to represent a model is related to its Kolmogorov
complexity [Kol63], which is uncomputable and must be approximated with some
arbitrary complexity measure. Following this formulation, the best structure for
describing the data is given by

G� = arg min
G

L(G) + min
Θ

L(Θ|G) + L(D|G, Θ), (3.7)

where L(G) measures the length of the shortest sequence required to describe the
model structure, and L(Θ|G) that for describing the model parameters given the
structure.

Parametric complexity

Two problems arise with the MDL formulation for structure learning. First, in (3.6)
both G and Θ are learned at the same time, by measuring the total model complexity
L(G, Θ). Therefore, it may very well be that L(G, Θ) is small due to structural

2More formally, p(H) = 1
Z

2−L(H) and L(H) = − log Z − log p(H), with Z some constant.
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constraints in the parameters Θ, while G remains a fully connected graph. This
is problematic for structure learning since we would like to capture constraints in
G, not in Θ. Second, the inner minimization in (3.7) in general does not accept
a closed-form solution, and requires a cumbersome exploration of the parameter
space. A practical solution to both these problems is to replace L(Θ|G) with C |D|(G),
an upper bound called the parametric complexity of the model, which measures the
expressiveness of the model for fitting data sets of size s = |D|. The best structure
under this refined MDL principle is then given by

G� = arg min
G

L(G) + C |D|(G) + min
Θ

L(D|G, Θ). (3.8)

With this new formulation, the model complexity now depends only on the graphical
structure G, relative to the size of the data set to be described. Still, in order to
derive proper scores one must give appropriate measures for L(G) and C |D|(G).

LL

A first straightforward approach is to consider only the likelihood term L(D|G, Θ).
This results in the log-likelihoodLL (LL) scoring function, which in the discrete case is
expressed as

SLL(G, D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

si,j,k log si,j,k

si,j
,

where ri is the number of possible instantiations of the random variable Vi, qi is
the number of possible instantiation of its parents PAVi , si,j,k counts the number of
samples in D where the variable Vi takes its k-th value while its parents take their
j-th value, and si,j = ∑

k si,j,k. Obviously LL does not favor simple models over
complex ones, and therefore is not favored in practice.

AIC

Another common choice is to include the parametric complexity C |D|(G) and ig-
nore the structure complexity L(G). A simple approximate is the number of free
parameters in Θ, resulting in the Akaike Information CriterionAIC (AIC) scoring function
[Aka74],

SAIC(G, D) = SLL(G, D) −
n∑

i=1
(ri − 1)qi.
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BIC

A finer approximate of the parametric complexity is given by the number of bits
required to store the free parameters. Since the precision of the maximum-likelihood
parameters aligns with the observed frequencies in the data set, the number of
bits required to express each parameter can be related to the sample size s [FY96],
resulting in the so-called Bayesian Information CriterionBIC (BIC) scoring function
[Sch78; Ris78],

SBIC(G, D) = SLL(G, D) − log s

2

n∑
i=1

(ri − 1)qi.

MDL

Finally, the structure complexity L(G) can be approximated by the number of bits
required to encode the structure, that is, one integer in {0, . . . , n} for each node
to indicate the size of its parent set, plus one integer in {1, . . . , n} per parent. The
resulting criterion is referred in [Cru+06] as the Minimum Description LengthMDL (MDL)
scoring function,

SMDL(G, D) = SLL(G, D) − log s

2

n∑
i=1

(ri − 1)qi −
n∑

i=1
(|PAVi | + 1) log n.

Note that in the literature many authors consider BIC as the MDL criterion. For
example, Burnham and Anderson [BA02][p. 286] write

“Rissanen [Ris89] proposed a criterion that he called minimum de-
scription length (MDL) [. . . ] , his result is equivalent to BIC.”

This is wrong, as argued in [Grü07][p. 552],

“We see that in AIC and BIC, the penalty of each model only depends on
the number of parameters and the sample size. In MDL model selection,
it also depends on the functional form of the model. [. . . ] We note that
researchers who claim MDL = BIC do have an excuse: in early work,
Rissanen himself has used the phrase “MDL criterion” to refer to BIC,
and, unfortunately, the phrase has stuck.”
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Discussion

Note that all the information-theoretic scores discussed here (LL, AIC, BIC and MDL)
are decomposable scoring functions, however only BIC was shown to be consistent
and equivalent, while LL is known to be inconsistent. In practice, empirical results
suggest that information-theoretic scoring functions based on the MDL principle
perform equally well, if not better, than Bayesian scoring functions [LMY12].

3.2.3 The optimization problem

When adopting a score-based approach, finding the best structure involves solving an
optimization problem over the set of all possible DAGs, which grows exponentially
with the number of variables [Rob73]. Unsurprisingly, Chickering [Chi95] shows
that finding the optimal DAG according to the BDe scoring function is NP-hard, and
later extends this result to any consistent scoring function [CMH03].

Several works investigate on exact optimization procedures by using dynamic pro-
gramming [KS04; OIM04; SM05; SM06], integer linear programming [Jaa+10;
Cus11; CB13], branch-and-bound [dJ11], or shortest path exploration [YMW11;
YM13; FMY14]. Currently, the time complexity of such procedures remains O(n2n)
[Koj+10]. In the meantime, several authors focus on approximate procedures to
recover a high-scoring structure in reasonable time. The simplest such approach is
greedy hill climbing, which starts with a random (usually empty) graph and repeat-
edly apply single edge addition, deletion or reversal until it reaches a locally optimal
structure. In order to overcome the local optima problem, all kinds of approximate
search procedure are conceivable, among which simulated annealing [HGC95],
genetic programming [Lar+96], tabu search [GL99] or ant colony optimization
[de +02]. Still, applying the search-and-score approach to large-scale problems
remains computationally very expensive, and the sub-optimal structures resulting
from different search strategies can exhibit a high variability [MJM15].

3.2.4 Meek’s conjecture

An important theoretical result in Bayesian network structure leaning is the so-called
"Meek’s conjecture", originally suggested by Meek [Mee97] in his PhD thesis and
later proven by [Chi02]. The conjecture implies the notion of covered edges in DAGs,
that is, edges which are not part of any v-structure3.

3Formally, an edge Vi ��� Vj is said covered when PAVi = PAVj \ {Vi}.
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Algorithm 1 Greedy Equivalent Search (GES)

Require: V = {V1, . . . , Vn} a set of random variables whose joint distribution is
DAG-faithful, S a consistent scoring function4.

Ensure: G a DAG faithful to p(v).
1: G ← an empty DAG over V
2: G ← GFS(G, S) 	 1) greedy forward search
3: G ← GBS(G, S) 	 2) greedy backward search

Thm. 3.1
Meek’s

conjecture

With G, H two DAGs such that I(G) Ď I(H), there exists a finite sequence of edge
removal and covered edge reversal operations in G such that: 1) after each operation
I(G) Ď I(H); and 2) after all operations G = H.

One direct consequence of Meek’s conjecture is a justification for the greedy backward
search (GBS)greedy

backward
search

algorithm, that is, start from a complete DAG and repeatedly apply
edge removal or covered edge reversal while the score increases. In the limit of large
sample size5 and with a consistent scoring function, GBS is guaranteed to converge
to a faithful DAG when p is DAG-faithful [Chi02]. When p is not DAG-faithful, then
GBS results in an inclusion-optimal DAG, that is, I(G) Ď I(p) and there exists no
DAG H such that I(G) Ă I(H) and I(H) Ď I(p) [CM02]. Therefore, GBS can offer
theoretical guarantees while exploring only a small subset of the entire search space,
which is a very appealing property. In situations where the optimal DAG is known to
be sparse, it can be more efficient to first perform a greedy forward search (GFS)greedy

forward
search

, that
is, start from an empty DAG G and repeatedly apply edge addition while the score
increases. In the limit of large sample size and given a consistent scoring function,
Nielsen et al. [NKP03] show that GFS is guaranteed to converge to an independence
map (I(G) Ď I(p)) under the Composition assumption. When combining GFS and
GBS we obtain the Greedy Equivalence Search (GES)GES algorithm [Chi02] (Algorithm 1),
which is guaranteed to output in the large-sample limit an inclusion-optimal DAG
under the Composition assumption, and a faithful DAG under the DAG-faithfulness
assumption.

3.3 The constraint-based approach

Constraint-based approaches make use of statistical independence tests to read the
independence model of the data-generating distribution, I(p), in order to build a
graphical structure G that respects the data constraints, I(G) Ď I(p).

4S(G) = lim|D|→∞ S(G, D), D ∼ p(v).
5That is, when the empirical distribution of D converges to p.
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Fig. 3.2. Distribution of the G statistic under h0 with 4 degrees of freedom (e.g., |X | = 3, |Y| =
|Z| = 2). The vertical bar indicates the lower threshold for rejecting the null hypothesis with
confidence level α = 5%, that is, the g value where

∫ +∞
g

p(G = g|h0) = 5%.

3.3.1 Conditional independence tests

In order to evaluate whether an independence relation X ⊥⊥ Y | Z holds in p or
not, one typically runs an asymptotic statistical test of conditional independence
(CI test) on D, such as a χ2 test or a G-test for discrete variables, and a Fisher’s
Z-test for continuous variables. Each of these tests computes a statistic based on the
observations for X, Y and Z in D, whose distribution under the null hypothesis of
independence h0 is known. When the statistic is considered too unlikely under h0,
then the null hypothesis is rejected and X ⊥
⊥ Y | Z is preferred. Otherwise, the null
hypothesis X ⊥⊥ Y | Z is accepted. As such, "classical" CI tests follow a frequentist
approach, as they make a decision based on a data-likelihood measure under the
null hypothesis, p(D|h0).

As an example, consider X, Y and Z discrete random variables, and the G-testG-test of
the null hypothesis h0 = X ⊥⊥ Y | Z. The statistic of the test is g = 2s × I(X, Y | Z),
where s denotes the number of samples in D and I(X, Y | Z) denotes the conditional
mutual information between X and Y given Z in the empirical data distribution6.
Formally, the G statistic is expressed as

g = 2
∑
xPX

∑
yPY

∑
zPZ

sx,y,z log sx,y,zsz
sx,zsy,z

,

where 0/0 = 1 by definition, sx,y,z counts the number of data samples where
X = x, Y = y and Z = z, sx,z the number of samples where X = x and Z = z,
and so on. Then, under the null hypothesis h0, by the central limit theorem the
G statistic asymptotically7 follows a χ2 distribution with (|X | − 1)(|Y| − 1)(Z)
degrees of freedom [Kul68]. The p-value of the test is then given by the asymptotic
probability p(G > g|h0) (see Figure 3.2), and the null hypothesis is rejected when
that probability is lower than a given threshold α, usually 5% or 1%.

6A.k.a. the conditional relative entropy or conditional Kullback-Leibler divergence between p(x, y|z)
and p(x|z)p(y|z).

7That is, when the empirical distribution of D converges to p.
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When the available sample size is too small, asymptotic CI tests are likely to fail to
reject the null hypothesis, and always accept independence (X ⊥⊥ Y | Z). In fact, the
required sample size depends implicitly upon the number of degrees of freedom of
the test, which increases exponentially with the number of variables in the X, Y
and Z subsets. Therefore, it is of practical interest to read (in)dependence relations
from D only between and conditioned on small variable sets, and avoid high-order
statistical tests as much possible.

3.3.2 The faithfulness assumption

In the general case, one can infer a rich independence model I(p) from a smaller
subset of conditional independence tests, by using general CI properties such as the
semi-graphoid axioms (Section 1.1.3). For example, from A ⊥⊥{B, C} | ∅ we can
deduce A ⊥⊥ B | C without performing a second statistical test, due to the Decomposi-
tion property. Still, in the general case, the problem identifying a parameter-minimal
DAG with an independence oracle is NP-hard [CHM04].

In situations where the underlying distribution is known to be DAG-faithful, one can
characterize rich independence models with even fewer CI tests, by using additional
CI properties which are specific to DAGs (e.g., Theorem 2.5). Therefore, many
constraint-based algorithms for Bayesian network structure learning assume that p

is DAG-faithful in order to derive efficient correct procedures [CHM04]. However,
the behaviour of such procedures when the DAG-faithfulness assumption is not met
is usually unknown.

3.3.3 Algorithms

We may now present the most popular constraint-based algorithms for Bayesian
network structure learning, according to a chronological order.

SGS

Under the DAG-faithfulness assumption, a faithful DAG G can be characterized with
only two properties [VP90]. The first one, known as the pairwise Markov property,
gives a sufficient and necessary condition for two nodes to be adjacent in G,

Y P PCX ⇐⇒ X ⊥
⊥ Y | Z, ∀Z Ď V \ {X, Y }. (3.9)
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Algorithm 2 Spirtes-Glymour-Scheines (SGS)

Require: V = {V1, . . . , Vn} a set of random variables whose joint distribution is
DAG-faithful, (· ⊥⊥ ·|·) a CI oracle.

Ensure: G a DAG faithful to p(v).
1: G ← complete UG over V
2: for all neighbor pairs Vi − Vj do 	 1) recover skeleton
3: if ∃Z Ď V \ {Vi, Vj} s.t. Vi ⊥⊥ Vj | Z then
4: Remove edge Vi − Vj

5: for all potential v-structures Vi − Vj − Vk do 	 2) orient edges
6: if 
 ∃Z Ď V \ {Vi, Vj , Vk} s.t. Vi ⊥
⊥ Vk | Z Y{Vj} then
7: Orient edges Vi ��� Vj ��� Vk

8: Orient all remaining und. edges, without creating any cycle or v-structure

This property is sufficient to characterize the skeleton8 of G. Once the skeleton is
known, a second property gives a necessary and sufficient condition for identifying a
v-structure X ��� W ��� Y . Formally, when {X, Y } Ď PCW and Y 
P PCX

9,

{X, Y } Ď PAW ⇐⇒ X ⊥
⊥ Y | Z Y{W}, ∀Z Ď V \ {X, Y, W}. (3.10)

Since all faithful DAGs share the same skeleton and the same set of v-structures
[VP90], edges that do not belong to a v-structure can be given any direction, so
long as no cycle or new v-structure is created in the graph. A direct application of
this characterization is the Spirtes-Glymour-Scheines (SGS) algorithm (Algorithm 2),
named after its authors [SGS90]. While being asymptotically correct under the DAG-
faithfulness assumption, the SGS algorithm still requires an exponential number of
statistical independence tests with potentially large conditioning sets, which is not
very efficient.

PC

Two other interesting properties implied by the DAG-faithfulness assumption allow
for more efficient procedures. The first one extends (3.9), and allows for skeleton
identification with fewer CI tests,

Y P PCX ⇐⇒
⎧⎨
⎩X ⊥
⊥ Y | Z, ∀Z Ď PCX \ {Y }, and

X ⊥
⊥ Y | Z, ∀Z Ď PCY \ {X}.
(3.11)

8The skeleton of a DAG denotes the UG with same adjacencies.
9Recall that PCX denotes the set of parents and children of X in G. Likewise, PAX , CHX and

SPX denote respectively the parents, children, and spouses of X.

3.3 The constraint-based approach 85



Algorithm 3 Peter-Clark (PC)

Require: V = {V1, . . . , Vn} a set of random variables whose joint distribution is
DAG-faithful, (· ⊥⊥ · | ·) a conditional independence oracle.

Ensure: G a DAG faithful to p(v).
1: G ← complete UG over V
2: for m from 0 to n − 2 do 	 1) recover skeleton
3: for all ordered neighbor pairs Vi − Vj do
4: if ∃Z Ď ADVi \ {Vj} s.t. |Z| = m and Vi ⊥⊥ Vj | Z then
5: Remove edge Vi − Vj

6: Sij ← Z
7: for all potential v-structures Vi − Vj − Vk do 	 2) orient edges
8: if Vj 
P Sik and Vj 
P Ski then
9: Orient edges Vi ��� Vj ��� Vk

10: Orient all remaining und. edges, without creating any cycle or v-structure

The second one allows for v-structure identification without further CI testing.
Formally, when {X, Y } Ď PCW and X ⊥⊥ Y | Z (and therefore Y 
P PCX),

{X, Y } Ď PAW ⇐⇒ W 
P Z. (3.12)

By exploiting these additional properties, we obtain the Peter-Clark (PC) algorithm
(Algorithm 3), a more efficient variant of SGS, also named after its authors [SG91;
SGS93]. The main idea behind PC is, during the skeleton identification phase, to
perform first statistical tests with no conditioning set (Z = ∅) to restrain the potential
neighbouring sets, then consider subsets of size 1 from the current neighbouring of
each tested variable, then subsets of size 2, and so on until convergence. As a result,
the size of the largest conditioning set is restricted to the size of the largest current
neighbouring set, which shrinks at each step. Then, during the edge orientation
phase, PC checks whether a X − W − Y triple constitutes a v-structures simply by
inspecting the separating set that removed the X − Y edge, without performing
any additional CI test due to (3.12). While both SGS and PC are correct under
the faithfulness assumption, PC requires much less statistical tests and smaller
conditioning sets for sparse structures, and therefore is more efficient in practice.

MMPC

As we have seen with the SGS and PC algorithms, the process of identifying a
faithful DAG can be decomposed into two steps, namely 1) skeleton identification;
and 2) edge orientation. The Max-Min Parents and Children (MMPC) algorithm
(Algorithm 4), proposed in [TAS03b], decomposes further the skeleton identification
problem into a set of efficient local searches focused on discovering the neighbour-
hood of each node, i.e., its parent and children set PC. MMPC consist in a two-phase
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Algorithm 4 Max-Min Parents and Children (MMPC)

Require: V = {V1, . . . , Vn} a set of random variables whose joint distribution is
DAG-faithful, X P V a target variable, (· ⊥⊥ ·|·) a CI oracle, dep(·, ·|·) a depen-
dence measure.

Ensure: PC a superset of the parents and children of X in a DAG faithful to p(v).
1: CAN ← V \ {X}, PC ← ∅
2: repeat 	 1) add true positives to PC
3: for all Y P CAN do
4: ZY ← arg minZĎPC dep(X, Y | Z)
5: if X ⊥⊥ Y | ZY then
6: Remove Y from CAN
7: Ydep ← arg maxY PCAN dep(X, Y | ZY )
8: Add Ydep to PC, remove Ydep from CAN
9: until PC does not change

10: CAN ← PC, PC ← ∅
11: repeat 	 2) remove false positives from PC
12: for all Y P CAN do
13: ZY ← arg minZĎPC\{Y } dep(X, Y | Z)
14: if X ⊥
⊥ Y | ZY then
15: Add Y to PC, remove Y from CAN
16: Yind ← arg minY PCAN dep(X, Y | ZY )
17: Remove Yind from CAN
18: until PC does not change

Algorithm 5 Corrected Max-Min Parents and Children (CMMPC)

Require: V = {V1, . . . , Vn} a set of random variables whose joint distribution is
DAG-faithful, X P V a target variable.

Ensure: PC the set of parents and children of X in a DAG faithful to p(v).
1: PC ← MMPC(X) 	 1) recover a PC superset
2: for all Y P PC do 	 2) false positives correction (AND filter)
3: if X 
P MMPC(Y ) then
4: Remove Y from PC

procedure: 1) a growing phase where potential neighbours are added to PC one
at a time, the most promising one first; and 2) a shrinking phase where wrongly
added neighbours are removed from PC one at a time, the least promising one first.
Unfortunately MMPC does not assert condition (3.11), and only identifies a super-set
of the neighbouring of a node [PBT05; TBA06]. Still, adding a simple symmetry
correction to MMPC (Algorithm 5) allows for recovering a faithful DAG skeleton,
according to the following property,

Y P PCX ⇐⇒ X P MMPC(Y ) and Y P MMPC(X). (3.13)

While MMPC is in essence very similar to the skeleton identification phase in the
PC algorithm, it is more efficient in practice [TAS03b] since it exploits not only
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Fig. 3.3. A star-shaped DAG, prone to false negative adjacencies with MMPC.

independence relations, X ⊥⊥ Y | Z, but also measures of how much dependencies
hold, dep(X, Y | Z). In practice MMPC implementations use the complementary
of the p-value of the CI test as a dependence measure. By considering only one
variable at a time, and adding/removing the most/least promising variables first,
MMPC ensures that when PC has grown so big that in cannot grow any more (i.e., a
statistical test will always accept X ⊥⊥ Y | Z when Z is too large), then it will contain
only the most important variables10. Still, the AND correction (3.13) implies that,
if X and Y are adjacent in the faithful DAG, a false negative X 
P MMPC(Y ) can
not be recovered from a true positive Y P MMPC(X). This is typically restrictive
when one variable has a large neighbouring set while its neighbours have small
ones. For example, consider the star-shaped DAG in Figure 3.3, where one node
has 5 neighbours, while the remaining ones have only 1. On nodes V1 to V5, MMPC
will run CI tests with a conditioning set of maximum size 1, and therefore will be
able to output node V6 as the only neighbour even with small data samples. On
the other hand, on node V6 MMPC will have to run CI tests with a conditioning set
of maximum size 4, which may fail to reject the null hypothesis with not enough
data samples. In such a situation, MMPC would result in an early stopping and
missing neighbours for node V6. Due to the AND correction in Algorithm 5, the false
negatives in MMPC(V6) will prevail and inevitably result in missing edges in the
skeleton.

IAPC

Before introducing the IAPC algorithm, we must first define the notions of Markov
blanket and Markov boundary.

Def. 3.1
Markov
blanket

A Markov blanket of X in V is a subset M Ď (V\X) such that X ⊥⊥ V\ (XYM) | M.
A Markov boundary is an inclusion-optimal Markov blanket, i.e., none of its proper
subsets is a Markov blanket.

10Note that similar ordering heuristics for PC were already discussed in [SGS93][§5.4.2.4].

88 Chapter 3 Bayesian network structure learning



Algorithm 6 Incremental Association Markov Boundary (IAMB)

Require: V = {V1, . . . , Vn} a set of random variables whose joint distribution
supports the Composition property, X P V a target variable, (· ⊥⊥ ·|·) a CI oracle,
dep(·, ·|·) a dependence measure.

Ensure: MB a Markov boundary of X in V.
1: MB ← ∅
2: repeat 	 1) add true positives to MB
3: Y ← arg maxY PV\(MB Y{X}) dep(X, Y | MB)
4: if X ⊥
⊥ Y | MB then
5: Add Y to MB
6: until MB does not change
7: repeat 	 2) remove false positives from MB
8: Y ← arg minY PMB dep(X, Y | MB \ {Y })
9: if X ⊥⊥ Y | MB \ {Y } then

10: Remove Y from MB
11: until MB does not change

The Incremental Association Markov Boundary (IAMB)IAMB algorithm (Algorithm 6),
proposed in [TAS03a], recovers a Markov boundary when the underlying distribu-
tion satisfies the Composition property [Peñ+07], which is true under the DAG-
faithfulness assumption (Theorem 2.5). Moreover, in a faithful DAG the Markov
boundary of a variable X is unique and is given by MBX = PCX Y SPX , that is,
the parents, children and spouses of X.

Under the DAG-faithfulness assumption, an additional property extends (3.9), which
indicates a simple procedure to recover the PCX from MBX ,

Y P PCX ⇐⇒ X ⊥
⊥ Y | Z, ∀Z Ď MX , (3.14)

where MX is a Markov blanket of X in V. As a direct consequence, the Incremental
Association Parents and Children (IAPC)IAPC algorithm (Algorithm 7) [MA10b] combines
IAMB to recover the Markov boundary of a variable, MBx, with a second pass to filter
out the spouses and keep only PCx. Algorithms such as IAPC are sometimes termed
weak PC learners, since they require a first set of CI tests with large conditioning
sets to recover PCX Y SPX , where MMPC recovers directly PCX with smaller
conditioning sets. Still, IAPC does not require the AND filter of MMPC (symmetry
correction), and therefore can be made less prone to false negatives by applying an
OR filter on the discovered neighbouring sets. For example, in the star-shaped DAG
in Figure 3.3 IAPC with OR filtering may be more efficient than MMPC to recover
the DAG skeleton.
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Algorithm 7 Incremental Association Parents and Children (IAPC)

Require: V = {V1, . . . , Vn} a set of random variables whose joint distribution is
DAG-faithful, X P V a target variable, (· ⊥⊥ ·|·) a CI oracle.

Ensure: PC the set of parents and children of X in a DAG faithful to p(v).
1: MB ← IAMB(X) 	 1) recover MB
2: PC ← MB
3: for all Y P PC do 	 2) remove spouses from MB
4: if ∃Z Ď MB \ {Y } s.t. X ⊥⊥ Y | Z then
5: Remove Y from PC

HPC

Finally, under the DAG-faithfulness assumption another interesting property which
extends (3.9) is,

Y P PCX ⇐⇒ X ⊥
⊥ Y | Z, ∀Z Ď MX
Y , (3.15)

where MX
Y is a Markov blanket of Y in MX Y{X}, and MX a Markov blanket of

X in V. The Hybrid Parents and Children (HPC) algorithm (Algorithm 8) [MA10b]
heavily relies on this property. Roughly speaking, HPC consists in two phases, 1)
recover MX a superset of PCX Y SPX with only low-order CI tests to avoid early
false negatives, and 2) combine several runs of IAPC within MX with an OR filter to
recover PC.

In practice, HPC often results in more accurate neighbouring sets than MMPC or
IAPC, particularly for small sample sizes and/or DAGs with large PC sets [MA10b].
However, this improvement comes at the price of an increased computational time,
due to the additional internal calls to IAPC for false negative correction.

3.4 The hybrid approach

Let us now summarize the pros and cons of both score-based and constraint-based
approaches. First, Bayesian and MDL scoring functions are well-defined regardless
of the data generating distribution p, or the sample size of the data set D. In
that sense the score-based approach is theoretically well-suited in every situation,
and in practice it is known to produce better structures than the constraint-based
approach. Its major drawback, however, is an exponential time complexity with
respect to the number of variables considered, which makes it rather prohibitive for
high-dimensional data sets.
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Algorithm 8 Hybrid Parents and Children (HPC)

Require: V = {V1, . . . , Vn} a set of random variables whose joint distribution is
DAG-faithful, X P V a target variable, (· ⊥⊥ ·|·) a CI oracle.

Ensure: PC the set of parents and children of X in a DAG faithful to p(v).
1: PCS ← V \ {X}
2: for m from 0 to 1 do 	 1) recover PCS a superset of PC
3: for all Y P PCS do
4: if ∃Z Ď PCS \ {Y } s.t. |Z| = m and X ⊥⊥ Y | ZY then
5: Remove Y from PCS
6: SY ← Z
7: SPS ← ∅
8: for all W P PCS do 	 2) recover SPS a superset of SP
9: SPSW ← ∅

10: for all Y P V \ (PCS Y{X}) do
11: if X ⊥
⊥ Y | SY Y{W} then
12: Add Y to SPSW

13: for all Y P SPSW do
14: if ∃Z P SPSW s.t. X ⊥⊥ Y | {W, X} then
15: Remove Y from SPSW

16: Add SPSW to SPS
17: PC ← IAPC(X, PCS Y SPS Y{X}) 	 3) recover PC
18: for all Y P PCS \ PC do 	 4) false negatives correction (OR filter)
19: if X P IAPC(Y, PCS Y SPS Y{X}) then
20: Add X to PC

On the other hand, constraint-based approaches require two major assumptions,
that is: 1) the independence model I(p) is faithful to a DAG; and 2) the CI tests
performed on D accurately reflect I(p). Both of these assumptions are problematic.
First, the DAG-faithfulness assumption forbids many simple kinds of interactions
between the variables of interest, such as deterministic relationships which violate
the Intersection property. In practice such relationships are frequent in many systems,
making the DAG-faithfulness assumption rather unrealistic. Second, even when I(p)
is faithful to a DAG, it may very well be that the independence model extracted
empirically with CI tests, I(D), is not. As a result constraint-based methods are
known to be quite unstable, and are prone to cascading effects where a single error
early on in the building process can result in very a different DAG structure. This is
particularly true during the edge-orientation step [SGS93]. Still, constraint-based
methods are in practice rather fast, as their computational complexity relates closely
to the maximum in-degree of any node in the DAG, regardless of the total size of the
graph [DD99].

The idea of a hybrid approach is best formulated by Koller and Friedman [KF09][p.
839],
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“Another open direction of research attempts to combine the best
of both worlds. Can we use the efficient procedures developed for
constraint-based learning to find high-scoring network structure? [. . . ]
A simpleminded combination of these two approaches uses a constraint-
based method to find starting point for the heuristic search. More elabo-
rate strategies attempt to use the insight from constraint-based learning
to reformulate the search space — for example, to avoid exploring struc-
tures that are clearly not going to score well, or to consider global
operators.”

3.4.1 Early works

Several early works attempted to combine both constraint-based and score-based
approaches. In [SV93] the PC algorithm is used to generate an absolute ordering
on the nodes, which allows for an efficient search procedure in the DAG space
restricted to that ordering [CH91]. In [DD99] PC is run several times with different
hyper-parameters (α value, CI tests ordering), and only the highest scoring DAG
is kept according to some scoring function. In [FNP99] a standard greedy search
procedure is used, where the parent set of each variable is restricted to a candidate
set of size k, defined using a heuristic dependence measure. In [Ad00; Ad01], a
greedy search procedure is used to minimize a specific cost function, that is, the
conditional mutual information I(X, Y |S) between each pair of non-adjacent nodes
given their minimal d-separating set in G. Moreover, a CI test X ⊥⊥ Y | S is used
to restrict the new edge candidates during exploration. In [dFP03] the learning
procedure alternates between a greedy search and a constraint-based correction,
which adds/removes edges in the current DAG by performing on a series of CI tests.
In [de 06], greedy search is used with a new hybrid scoring function, based on a
penalized mutual information I(X, PAX |∅) between each node and its parents.

3.4.2 Max-Min Hill-Climbing (MMHC)

While all the above-mentioned approaches bridge the gap between score-based and
constraint-based approaches, a significant break-through was made in [TBA06], with
the Max-Min Hill-Climbing (MMHC) algorithm (Algorithm 9). While conceptually
simple, MMHC combines efficient procedures from both worlds. First a skeleton
is learned using the constraint-based MMPC algorithm, then a high-scoring DAG
is found using a greedy search within the restricted search space of the skeleton,
enhanced with a TABU list as in [FNP99] to escape local maxima. The search
begins with an empty graph, and at each iteration evaluates every possible edge
addition, deletion or reversal, then performs the operation that leads to the highest
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Algorithm 9 Max-Min Hill-Climbing (MMHC)

Require: V = {V1, . . . , Vn} a set of random variables.
Ensure: G a high-scoring Bayesian network structure.

1: for all X P V do 	 1) restriction phase
2: PCX ← MMPC(X) X{Y |X P MMPC(Y )}
3: G ← empty graph over V 	 2) maximization phase
4: Starting from G, perform a TABU search with operators add, delete, and reverse

edge. Only try operator add X ��� Y if Y P PCX

scoring structure. The TABU list keeps track of the last 100 structures explored,
and forbids operations which result in a structure already in the list. In order to
escape local maxima, operations resulting in a score decrease are permitted, and the
algorithm terminates after 15 iterations without increasing the maximum score ever
encountered during search. The overall best scoring structure is then returned.

To some extent, the constraint-based approach efficiently reduces the space of
candidate DAGs to consider during the score-based search, resulting in an efficient
hybrid procedure which scales to distributions with thousands of variables. In
[TBA06] an extensive empirical comparison of MMHC is conducted against a variety
of other score-based, constraint-based and hybrid methods, namely the Peter-Clark
(PC) [SG91], Sparse Candidate (SC) [FNP99], Three Phase Dependency Analysis
(TPDA) [Che+02], Optimal Reinsertion (OR) [MW03], Greedy Equivalent Search
(GES) [Chi02], and Greedy Search (GS) algorithms. Overall, MMHC outperforms
all other approaches both in terms of quality of the reconstructed network and
total running time. Although MMHC is rather heuristic by nature (it returns a local
optimum of the score function), it is currently considered as the most powerful state-
of-the-art algorithm for BN structure learning capable of dealing with thousands of
nodes in reasonable time.

3.5 Our contribution: a new hybrid algorithm

The work presented in this section constitutes our main contribution to the field
of Bayesian network structure learning, with a novel algorithm called Hybrid HPC
(H2PC) [GAE12; GAE14]. We introduce the main motivation behind H2PC, which
draws strongly on the MMHC and HPC algorithms, and measure its empirical
performance against MMHC, which is currently the most powerful state-of-the-art
algorithm for BN structure learning [TBA06].

3.5 Our contribution: a new hybrid algorithm 93



3.5.1 The ideal skeleton

In order to achieve both efficiency and quality, the skeleton learned within a two-
phase hybrid algorithm such as H2PC must support two properties: 1) sparsity in
order to facilitate the optimization problem; and 2) sufficiency in order to ensure
reachability to the score-optimal DAG G�. Both these properties appear rather
opposite, as an empty skeleton clearly satisfies sparsity, while a complete skeleton
satisfies sufficiency. Under the DAG-faithfulness assumption, the optimal skeleton is
unique and can be obtained with any of the constraint-based methods mentioned in
Section 3.3. Still, in practice each of these approaches will result in a quite different
structure, with potentially missing edges (false negatives) or unnecessary edges
(false positives).

In [PIM08], the Constrained Optimal Search (COS) algorithm substitutes the greedy
search of MMHC with an exact optimization procedure, which is guaranteed to
return the highest scoring DAG within the skeleton-restricted search space (called a
super-structure). As expected, COS compares favorably to MMHC in terms of DAG
quality, but the additional computational cost is prohibitive for large-sized networks.
An interesting discussion in [PIM08] is the following,

“MMPC appears to be a good method to learn robust and relatively
sparse skeletons; unfortunately, soundness is achieved only for high
significance levels, α > 0.9, implying a long calculation and a denser
structure. Practically, when the constraint is learned with α > 0.05, in
terms of accuracy, COS is worse than OS since the superstructure is
usually incomplete;”

Therefore, we believe that there is room for improvements in the skeleton identifica-
tion phase of MMHC, specifically to obtain a better trade-off between false negative
and false positive edges.

3.5.2 Hybrid Hybrid Parents and Children (H2PC)

The Hybrid Hybrid Parents and Children (H2PC) algorithm (Algorithm 10) [GAE12;
GAE14] draws strongly on the MMHC algorithm, and is specifically intended to
improve the constraint-based phase by learning a skeleton with HPC instead of
MMPC. Since HPC is experimentally more accurate than MMPC [MA10b; VM12],
especially in presence of large neighbouring sets, it should result in a better skeleton
and in the end a better DAG structure after the maximization phase.
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Algorithm 10 Hybrid Hybrid Parents and Children (H2PC)

Require: V = {V1, . . . , Vn} a set of random variables.
Ensure: G a high-scoring Bayesian network structure.

1: for all X P V do 	 1) restriction phase
2: PCX ← HPC(X) X{Y |X P HPC(Y )}
3: G ← empty graph over V 	 2) maximization phase
4: Starting from G, perform a TABU search with operators add, delete, and reverse

edge. Only try operator add X ��� Y if Y P PCX

HPC may be thought of as a way to compensate for the large number of false
negatives at the output of a weak PC learner, IAPC, by performing a series extra
computations. As this may arise at the expense of the number of false positives,
within HPC we employ a modified of IAMB algorithm, namely IAMBFDR Peña
[Peñ08], which aims at controlling the false discovery rate (FDR) in the learned
Markov boundary. The resulting PC learner, IAPC-FDR, exhibits a better trade-off
between false negatives and false positives, and in turn improves the quality of the
neighbourhoods learned by HPC. Note that, under the DAG-faithfulness assumption,
X P HPC(Y ) if and only if Y P HPC(X) . However, in practice this is not always
true, particularly when working in high-dimensional domains [Peñ08]. In such a
situation, two simple solutions exist for combining contradictory neighbouring sets,
either by applying an AND filter, which decreases the number of false negatives at
the cost of more false positives, or an OR filter which does the opposite. In our
implementation of H2PC we opted for the first solution, which results in a better
false negatives / false positives trade-off.

3.5.3 Experimental validation

In order to assess the empirical performance of H2PC, we conduct an experimental
comparison of H2PC against MMHC on synthetic data sets sampled from eight
well-known benchmark Bayesian networks, presented in Table 3.1. All Bayesian
networks (structure and probability tables) can be downloaded from the bnlearn
repository11. We do not claim that those Bayesian networks resemble real-world
problems, however, they make it possible to compare the output of the algorithms
with the true data-generating DAG. Ten sample sizes have been considered for
training: 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 and 50000, along
with a test set with 50000 samples, generated from each BN with ancestral sampling
[Bis06]. All experiments are repeated 10 times for each sample size and each BN.

We implemented H2PC in R [R C16], within the bnlearn package from Scutari
[Scu10] which already contains an implementation of the MMHC algorithm12.
11http://www.bnlearn.com/bnrepository
12The H2PC source code is publicly available at https://github.com/gasse/bnlearn-clone-3.4.
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Tab. 3.1. Description of the BN benchmarks used in the experiments.

network # var. # edges
max. in/out domain min/med/max

degree range PC set size

child 20 25 2/7 2-6 1/2/8
insurance 27 52 3/7 2-5 1/3/9
mildew 35 46 3/3 3-100 1/2/5
alarm 37 46 4/5 2-4 1/2/6

hailfinder 56 66 4/16 2-11 1/1.5/17
munin1 186 273 3/15 2-21 1/3/15

pigs 441 592 2/39 3-3 1/2/41
link 724 1125 3/14 2-4 0/2/17

Within both MMHC and H2PC we employed a BDeu scoring function with equivalent
sample size 10, as suggested in [KF09], and a G-test of conditional independence
with threshold α = 0.05. Experiments were carried out on a machine with Intel(R)
Core(TM) i5-3470M CPU @3.20 GHz 4GB RAM running Linux 64 bits.

Performance indicators

We first investigate the quality of the skeleton learned during the restriction phase,
compared to the skeleton of the true data-generating DAG. From the adjacency
matrix of the true skeleton and the learned skeleton, we obtain a contingency table
with the number of true positives (TP, edges present in both skeletons), false positives
(FP, edges present only in the learned skeleton), true negatives (TN, edges absent in
both skeletons) and false negatives (FN, edges present only in the true skeleton).
Based on this contingency table we report five indicators:

• the false negative rate: FN/(TP + FN);
• the false positive rate: FP/(TP + FP);
• the precision: TP/(TP + FP);
• the recall: TP/(TP + FN);
• the Euclidean distance from perfect precision and recall:

√
(1 − prec.)2 + (1 − rec.)2,

as proposed in [Peñ+07].

Second, we assess the quality of the DAG learned during the maximization phase as
in [SA12]. We report five indicators:

• the BDeu score on train and test data sets;
• the BIC score on train and test data sets;
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• the Structural Hamming Distance (SHD) between the learned and the true
data-generating DAG, that is, the minimum number of edge additions, removals
and reversals required to match the two independence models.

Results

In Figure 3.4, we report the quality of the skeleton obtained with HPC over that
obtained with MMPC (before the maximization phase), as a function of the sample
size, averaged over the 8 benchmark Bayesian networks. The increase factor for
a given performance indicator is expressed as the ratio of the performance value
obtained with HPC over that obtained with MMPC (the gold standard). Note that
for some indicators, an increase is actually not an improvement but is worse (e.g.,
false positive rate, Euclidean distance). Regarding the quality of the skeleton, the
advantages of HPC against MMPC are noticeable. As expected, HPC consistently
increases the skeleton recall, at the cost of a little expense in precision. The overall
recall/precision trade-off seems better with HPC, since the Euclidian distance is con-
sistently improved. The main drawback of HPC is that it requires extra computations
compared to MMPC, with an increasing number of CI tests. As a consequence the
running time during the restriction phase of H2PC is higher than that of MMHC,
within order 10 and up to 25 for large Bayesian networks / sample sizes.

In Figure 3.5, we report the quality of the final DAG obtained with H2PC over that
obtained with MMHC (after the maximization phase), as a function of the sample
size, averaged over the 8 benchmark Bayesian networks. Regarding the BDeu and
BIC scores on both training and test data, the improvements are noteworthy (recall
that both scores take negative values, therefore the smaller the ratio the better).
The results in terms of goodness of fit to training and test data using H2PC clearly
dominate those obtained using MMHC whatever the sample size considered, hence
its ability to generalize better. Regarding the quality of the network structure itself
(i.e., how close is the DAG to the true dependence structure of the data-generating
distribution), we found H2PC to perform significantly better as the sample size
increases. The SHD ratio decays rapidly (lower is better), and for 50 000 samples the
SHD with H2PC is on average only 50% that of MMHC. Regarding the computational
burden involved, we may observe from Table 3.2 the total computational overhead
of H2PC compared to MMHC. The ratio grows somewhat linearly with the sample
size, with H2PC within order 10 times slower on average than MMHC with 50000
samples.
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(e) Euclidean distance (lower is better).
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Fig. 3.4. Skeleton quality. The top two figures present quality measures for both HPC and MMPC,
while the remaining figures present the ratio HPC / MMPC. Black lines indicate mean values,
while boxplots indicate quartiles and most extreme values.
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(a) BDeu on training set (lower is better).
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(b) BDeu on test set (lower is better).
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(c) BIC on training set (lower is better).
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(d) BIC on test set (lower is better).
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(e) SHD (lower is better).
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(f) Number of search iterations.

Fig. 3.5. DAG quality. All figures present the ratio HPC / MMPC. Black lines indicate mean values,
while boxplots indicate quartiles and most extreme values.
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Tab. 3.2. Total running time ratio (H2PC / MMHC).

Network
Sample Size

50 100 200 500 1000 2000 5000 10000 20000 50000

child
0.94 0.87 1.14 1.99 2.26 2.12 2.36 2.58 1.75 1.78
±0.1 ±0.1 ±0.1 ±0.2 ±0.1 ±0.2 ±0.4 ±0.3 ±0.6 ±0.5

insurance
0.96 1.09 1.56 2.93 3.06 3.48 3.69 4.10 3.76 3.75
±0.1 ±0.1 ±0.1 ±0.2 ±0.3 ±0.4 ±0.3 ±0.4 ±0.6 ±0.5

mildew
0.77 0.80 0.79 0.94 1.01 1.23 1.74 2.14 3.26 6.20
±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.2 ±0.6 ±1.0

alarm
0.88 1.11 1.75 2.43 2.55 2.71 2.65 2.80 2.49 2.18
±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.2 ±0.3 ±0.6

hailfinder
0.85 0.85 1.40 1.69 1.83 2.06 2.13 2.12 1.95 1.96
±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.2 ±0.6

munin1
0.77 0.85 0.93 1.35 2.11 4.30 12.92 23.32 24.95 24.76
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.2 ±0.7 ±2.6 ±5.1 ±6.7

pigs
0.80 0.80 4.55 4.71 5.00 5.62 7.63 11.10 14.02 11.74
±0.0 ±0.0 ±0.1 ±0.1 ±0.2 ±0.2 ±0.3 ±0.6 ±1.7 ±3.2

link
1.16 1.93 2.76 5.55 7.04 8.19 10.00 13.87 15.32 24.74
±0.0 ±0.0 ±0.0 ±0.1 ±0.2 ±0.2 ±0.3 ±0.4 ±2.5 ±4.2

all
0.89 1.04 1.86 2.70 3.11 3.71 5.39 7.75 8.44 9.64
±0.1 ±0.1 ±1.2 ±1.5 ±1.9 ±2.2 ±4.0 ±7.3 ±8.4 ±9.7

3.5.4 Discussion

We discussed a hybrid algorithm for Bayesian network structure learning called
Hybrid HPC (H2PC), intended for improving the state-of-the-art H2PC algorithm
from Tsamardinos et al. [TBA06], with a better skeleton identification phase. Our
extensive experiments showed that the skeleton learned by H2PC reduces the number
of missing edges without sacrificing the number of extra edges, which is crucial for
the soundness of two-stage hybrid methods [PIM08; Koj+10]. As a result H2PC
outperforms MMHC by a significant margin in terms of structure quality in almost
every situation, at the cost of a higher computational overhead, within order 10. Still,
we showed experimentally that H2PC is scalable to problems with several hundreds
of variables and large sample sizes, and therefore should be preferred over MMHC
when affordable.

The main drawback of H2PC being its demanding computational time, it is worth
noting that in our experiments HPC was run independently on each node, without
keeping track of the (in)dependencies previously found. This clearly leads to some
loss of efficiency due to redundant calculations, and we believe that the computa-
tional cost of H2PC may be reduced by using a cache to store the result of previous
CI tests, or by optimizing the inner IAMB / IAPC procedures within HPC for an early
stopping when appropriate.
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Finally, we believe that constraint-based approaches for Bayesian network structure
learning could benefit from theoretical analysis under milder assumptions than DAG-
faithfulness, as in [Peñ+07] where IAMB was shown to require only the Composition
property. Unfortunately, such theoretical studies are rather few. Still, we observe
that each of the constraint-based approaches discussed in Section 3.4 require at least
the Composition property, as none of these is able to recover the skeleton of a DAG
A ��� C ��� B with an exclusive OR relationship (p(C = A ⊕ B) = α). This is also
true of any greedy score-based approach that starts from an empty DAG, such as
GES. As a consequence, the Composition property seems to play an important role in
Bayesian structure learning, and PGM structure learning in general, as it allows for
the design of efficient procedures. Conversely, complex relationships (i.e., which do
not imply pairwise relationships) seem very challenging for structure learning.
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4Multi-label classification

„When we try to pick out anything by itself we
find that it is bound fast by a thousand invisible
cords that cannot be broken, to everything in the
universe.

— John Muir
1869

In a general setting, supervised machine learning consists in learning a mapping
from an input space X to an output space Y , given a set of examples {(x(i), y(i))}n

i=1.
The problem is well-studied in the uni-dimensional output space context, leading to
standard classification problems for discrete-valued outputs (i.e. y P {c1, . . . , cm}),
or regression problems for continuous outputs (i.e. y P R). In situations where the
output space is multi-dimensional, the literature typically refers to the problem as
multivariate prediction, multivariate output learning, or structured output prediction.
Multi-label classification (MLC) refers to a specific class of multivariate prediction
problems, in situations where all output variables are binary (i.e. y P {0, 1}m).

Multi-label classification has received an increasing attention in the last years from
the machine learning community. This setting corresponds to classification problems
with non-mutually exclusive classes, which is encountered in many recent real-world
problems, including image indexing and annotation [Wan+14], facial expression
analysis [Wan+15; Zha+15b], text categorization [AAN15], sentiment analysis
[LC15], fault-control [Li+15], drug side effects prediction [Zha+15a], genome-wide
protein function assignment [Han+15; WHZ14], and early detection of chronic
diseases [Zuf+15] to cite a few.

So far, there is a consensus among researchers that, to improve the performance of
multi-label learning algorithms, label dependencies have to be incorporated into the
learning process [Lua+12; TV07; GG11; ZZ10; CMM12; Rea+09; BRR98; Koc+07;
BLL11; Cor+14]. Indeed, the problem of learning a mapping X ���� Y from data
is tightly related to the problem of modeling p(y|x), and therefore exploiting the
(in)dependence structure between the labels seems a good idea to help in modeling
their distribution. However, multi-label learning is often cast as a loss-minimization
problem, and Dembczynski et al. [Dem+12] reminds us that one cannot expect
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the mapping to be optimal for different types of losses at the same time. Most
importantly, the expected benefit of exploiting label dependence depends on the loss
function to be minimized, e.g., the popular label-wise decomposable Hamming loss
does not require to model such dependencies. On the other hand, the label-wise
non-decomposable subset 0/1 loss clearly benefits from modeling label dependencies.
An open question remains: given a particular loss function, what shall we capture
exactly from the statistical relationships between labels to solve the multi-label
classification problem?

Since we are interested in learning the structure of probabilistic graphical models, the
multi-label classification problem seems a good setting to study and apply structure
learning algorithms in this context. This chapter is intended to present a formal
introduction the multi-label classification problem, its challenges, and a state of the
art of the main approaches that can be found in the literature.

4.1 Supervised learning

In this chapter, we place ourselves in the context of fully-supervised multi-label
learning. Formally, given a set of data samples D = {(x(1), y(1)), . . . , (x(n), y(n))}
drawn independently from a joint distribution p(x, y), we want to find a mapping
h : X ��� Y such that, on average, if we draw a new sample (x, y) from p, h(x) will
be close to y. This definition resumes very well the idea of supervised learning, and
appears to be rather precise. However, it raises one question: what does "close"
mean ? Closeness requires a notion of distance in the output space Y, which is
often defined as a mapping to a positive cost Y × Y ���� R≥0, a.k.a. a loss function
L(h(x), y). Finding the best mapping then boils down to minimizing the expected
loss over p(x, y), and thus the best mapping for a particular loss function may not be
the best for some other loss function. Although this is true for all machine learning
problems, it is even more true in the context of multi-label learning, as we will see.

4.1.1 Risk minimization

Formally, the risk of a particular mapping h under a particular loss function L is
defined as the expected loss over the joint distribution,

RL(h) = Ex,y[L(h(x), y)],

which translates to ∫
x,y

L(h(x), y)p(x, y)dxdy.
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Given a particular input sample x, the point-wise risk-minimizing prediction h�(x),
a.k.a the Bayes-optimal prediction, is given by

h�(x) = arg min
h(x)

∫
y

L(h(x), y)p(y|x)dy. (4.1)

To alleviate our notation, in the following we will consider without loss of generality
that x is fixed, so that we can write h(x) = h and p(y|x) = p(y). Also, note that the
Bayes-optimal prediction h� is not necessarily unique, thus the P symbol should be
preferred to = in (4.1). For simplicity, in the following we will omit this ambiguity
and always refer to the Bayes-optimal prediction.

Complexity

Let us consider the complexity of solving equation (4.1) in the multi-label classifica-
tion setting, that is, y P {0, 1}m a binary-valued output space. First, evaluating the
risk of an arbitrary mapping under an arbitrary loss function requires to model p(y),
which amounts to estimating 2m − 1 parameters in the worst case. Then, finding
the risk-minimizing prediction h� is achieved by evaluating all 2m combinations of
h, each requiring in turn a summation over all 2m combinations of y. The overall
parameter complexity of multi-label classification is then O(2m), and the inference
complexity O(22m).

In this thesis, our main contribution is based on the idea of exploiting the dependence
structure between the labels to decompose the expression of the risk-minimizer in
(4.1), and simplify both the estimation of the parameters during the learning phase
and the evaluation of the optimal prediction during the inference phase. Clearly the
benefit of this approach is highly dependent of the loss function to be minimized, as
for some loss functions the expression of the risk naturally decomposes into simple
terms, regardless of the dependence structure between the labels.

Decomposable loss

Consider a loss function that decomposes into a sum of terms over each of the
labels, i.e. a label-wise decomposable loss function L(h, y) = ∑m

i=1 Li(hi, yi). Such
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a decomposition is present, for example, in the popular Hamming loss. Then, the
risk of a particular output h becomes

∑
y

p(y)
m∑

i=1
Li(hi, yi) =

m∑
i=1

∑
y

p(y)Li(hi, yi).

From the chain rule of probabilities we can write

∑
y

p(y)Li(hi, yi) =
∑
yi

p(yi)Li(hi, yi)
∑
y−i

p(y−i|yi),

where y−i denotes the y vector deprived of its i-th element yi. The right-most term
vanishes (it sums to one by definition), and finally the risk-minimizing output is
given by

h� = arg min
h

m∑
i=1

∑
yi

Li(hi, yi)p(yi).

Note that knowing only the p(yi) terms is sufficient to solve this problem, and
the estimation of the full joint distribution p(y) is no longer required. Moreover,
since min(a + b) = min(a) + min(b), the problem naturally decomposes into m

independent minimization problems, one for each label. Overall, the parameter
complexity is reduced from O(2m) to O(m), and the inference complexity is reduced
from O(22m) to O(4m).

Non-decomposable loss

But what if the loss function does not decompose at all? This is where modeling
the label dependence structure can help. Obviously, taking into account the inde-
pendence relations between the labels (more exactly the conditional independence
relations given the features) will reduce the number of parameters required to
estimate the joint distribution p(y|x), and make the learning step easier. However,
we can not say that it will in general reduce the inference complexity. Suppose that
we find a partition {Y1, Y2} of the label set with respectively m1 and m2 labels,
such that Y1 ⊥⊥ Y2 | X. Then the point-wise risk-minimizing prediction is given by

h� = arg min
h

∫
y1

p(y1)
∫

y2
p(y2)L(h, y).

The number of required parameters to estimate is reduced from 2m−1 to 2m1+2m2−2,
however solving the minimization problem still requires the evaluation of 22m

combinations of (h, y), thus the inference complexity remains the same.

What can we conclude from these examples? First, the complexity of the multi-label
learning problem is highly dependent on the loss function we seek to minimize.
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Considering a particular loss function can reduce the number of parameters to
estimate from the training set, which improves the generalization capacity of the
model, and can also reduce the inference complexity, which improves the scalability
of the model in high dimensional output spaces. Also, it is worth to notice that in
some situations it is not required to consider the dependencies between the labels. In
the best case, i.e. a label-wise decomposable loss function as shown above, modeling
marginal distributions is sufficient, regardless of the structure of the joint distribution
p(y). Similarly, for the F -loss function (the complement of the F -measure) it was
shown that the parameter complexity can be reduced O(m2), and the inference
complexity to O(m3), regardless of the dependency structure between the labels
[Dem+11]. In general, the problem of establishing whether, and how, the risk of a
particular loss function decomposes is not trivial, and remains an open question.

4.1.2 Multi-label loss functions

A variety of evaluation measures have been presented in the literature to cover the
different requirements encountered in practical multi-label classification problems,
see for instance [TKV10]. Commonly used measures for assessing the performance
of MLC algorithms include the Hamming loss, subset 0/1 loss [Dem+10], accuracy,
precision, recall, F -measure, one-error, coverage, average precision [TKV10], and more
recently the balanced error rate [SB15]. This is not surprising as MLC applications
have different goals and requirements. In e-discovery applications, all the relevant
documents should be retrieved, so recall is the most relevant measure. In Web search,
on the other hand, precision should be as important as the recall, so the F -measure
might be more appropriate [PC10]. In many usual quiz-based examinations provided
by Massive open on-line courses (MOOCs), assessment is based on multiple choice
questions, so the subset 0/1 loss is more appropriate. In the following we will review
the most common loss functions for multi-label classification.

Hamming loss

Certainly the most intuitive and commonly used loss function in the multi-label
setting is the Hamming loss. Formally, the Hamming loss is defined as

LH(h, y) = 1
m

m∑
i=1

I(yi 
= hi),

where I(·) is the standard {False, True} ��� {0, 1} mapping.
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Clearly, the Hamming loss is label-wise decomposable, and thus theoretically does
not benefit from modeling label dependencies. It is easily shown that the point-wise
risk-minimizing prediction is given by the mode of the marginal distribution of each
label,

h∗
i = arg max

yi

p(yi).

As a result, both the parameter and inference complexity of multi-label classification
under the Hamming loss is O(m).

Multi-label classification is often reformulated as a multivariate regression problem,
in order to apply calculus-based machine learning algorithms, such as support vector
machines or feed-forward neural networks. A popular alternative definition of the
Hamming loss is then 1

m‖y − h‖2
2, where ‖·‖2 is the Euclidean distance, a.k.a L2-

norm. Indeed, the squared L2-norm reduces to a sum of squared absolute values,
1
m

∑
i |yi − hi|2, which is equivalent to 1

m

∑
i I(yi 
= hi) in binary output spaces. In

recent works [Bor+15; CH16], minimizing the empirical loss is often reformulated as
a minimization problem over ‖Y − H‖2

F , where ‖·‖2
F denotes the squared Frobenius

norm, Y the matrix of training samples, and H the matrix of predictions.

Note that, in general, any loss function which is expressed as 1
m‖y − h‖p

p reduces
to the Hamming loss in the case of a binary output space, with ‖·‖p the Lp-norm
and p P R>0. Any such loss function is clearly label-wise decomposable, and thus
theoretically does not require to take into account label dependencies.

Subset zero-one loss

Another common loss function in multi-label classification is the subset zero-one loss.
Formally, the subset zero-one loss is defined as

LS(h, y) = I(y 
= h).

This loss function appears to be overly stringent, with a very singular notion of
distance in the output space. The distance between any pair of points in Y is always
1, except in the particular situation where h = y and it is 0. Subset zero-one loss is
known to be a particularly difficult loss function for risk-minimization. However, in
our work it will be of particular interest since it is not label-wise decomposable. The
point-wise risk-minimizing prediction is given by the mode of the joint distribution
of the labels, a.k.a. the maximum a-posteriori estimate (MAP), or most probable
expectation (MPE)

h∗ = arg max
y

p(y).
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As a result, both the parameter and inference complexity of multi-label classification
under the subset zero-one loss are O(2m).

Again, multi-label classification under subset zero-one loss may be cast as a mul-
tivariate regression problem. In general, any loss function which is expressed as
limq→0‖y − h‖q

p reduces to the subset zero-one loss function in the case of a binary
output space, with ‖·‖p the Lp-norm and p P R>0.

Recall, precision, accuracy

In binary classification, it is common to synthesize the performance of a classifier
over a sample set in a contingency table. Given a data set D = {(x(i), y(i))}n

i=1 and
a vector of predicted values (h(1), . . . , h(n)), such that h(i) = h(x(i)), a contingency
table reports the number of (h(i), y(i)) combinations corresponding to true positive
(1, 1), true negative (0, 0), false positive (1, 0) and false negative (0, 1) predictions.

Tab. 4.1. A binary contingency table.

h
0 1

y
0 tn fp
1 fn tp

Several evaluation measures can then be extracted from the contingency table, such
as the recallrecall , i.e. the ratio of correct predictions among the positive observations,

Recall = tp
tp + fn

P [0, 1],

the precisionprecision , i.e. the ratio of correct predictions among the positive predictions,

Precision = tp
tp + fp

P [0, 1],

and the accuracyaccuracy , i.e. the ratio of correct predictions overall,

Accuracy = tp + tn
tp + tn + fp + fn

P [0, 1].

In a multi-label setting with m labels, given a data set D, the observed and predicted
values take the form of two n × m matrices (y(1), . . . , y(n)) and (h(1), . . . , h(n)), and
building a contingency table appears to be less straightforward. Three types of
contingency tables are usually considered, based either on:

• global counts, i.e.
∑n

i=1
∑m

j=1 I((h(i)
j , y

(i)
j ) = (·, ·));
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• label-wise counts for a given label Yj , i.e.
∑n

i=1 I((h(i)
j , y

(i)
j ) = (·, ·));

• instance-wise counts for a given sample y(i), i.e.
∑m

j=1 I((h(i)
j , y

(i)
j ) = (·, ·)).

Although several evaluation metrics have been proposed in the literature based
on global and label-wise contingency tables [ZZ14], in a standard risk-minimizing
framework we are interested in loss functions that are point-wise defined, so in
this work we will consider only the last option, i.e. performance measures based
on instance-wise contingency tables. In the following we will refer to the recall,
precision and accuracy as instance-wise functions, i.e.

rec(h, y) = h · y
y · y

, prec(h, y) = h · y
h · h

, acc(h, y) = h · y
m

,

where · denotes the dot product operator and 0/0 = 1 by definition.

Note that these measures are not distance metrics, but rather similarity metrics,
which translate to proper loss functions in their complementary form, i.e. 1 −
rec(h, y), 1 − prec(h, y) and 1 − acc(h, y). Note that the accuracy is a commonly
used metric for risk-minimization, as it reduces to the popular Hamming loss in its
complementary form. On the other hand, the recall and precision considered indi-
vidually do not provide interesting loss functions, as their Bayes-optimal prediction
would be respectively h� = 1 and h� = 0 regardless of the distribution p(y).

F-measure

A popular loss function that combines recall and precision is the so-called Fβ loss,
which is usually introduced in its complementary form the Fβ measure. Formally,
the Fβ measure is defined in terms of recall and precision as

Fβ =
(

α

Precision
+ 1 − α

Recall

)−1
P [0, 1],

where α = 1/(1 + β2). According to Van Rijsbergen [Van79, Chapter 7], Fβ was
derived so that it "measures the effectiveness of retrieval with respect to a user
who attaches β times as much importance to recall as precision". In the multi-label
learning context, the formulation of the instance-wise Fβ loss simplifies to

LFβ
(h, y) = 1 − (1 + β2) × h · y

h · h + β2 × y · y
,

where · denotes the dot product operator and 0/0 = 1 by definition. When β = 1
(α = 1/2), F1 reduces to the harmonic mean of precision and recall, which gives
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equal importance to both terms. The resulting measure is known as the Dice
coefficient [Dic45], which is most often simply called the F -measure, or F -score.

Recently, Dembczynski et al. [Dem+11] showed that solving equation (4.1) for
F -measure maximization does not require to model the full joint distribution p(y),
but only a specific distribution p(yi, sy) for every label, where sy = y · y. As a result,
the General F-measure Maximizer (GFM) algorithm for multi-label classification
under the F -loss has a parameter complexity in O(m2), and an inference complexity
in O(m3).

Jaccard index

Another well-known loss function in multi-label classification is the Jaccard distance,
whose complementary form is the Jaccard index, a.k.a. Jaccard similarity coefficient.
The expression of the Jaccard index closely resembles that of the F -measure, and is
formally defined in terms of recall and precision as

Jaccard =
( 1

Precision
+ 1

Recall
− 1

)−1
P [0, 1].

In the multi-label learning context, the formulation of the instance-wise Jaccard
distance simplifies to

LJ(h, y) = 1 − h · y
h · h + y · y − h · y

,

where · denotes the dot product operator and 0/0 = 1 by definition.

It remains an open question whether or not a closed-form solution for the risk mini-
mizer of the Jaccard similarity exists, but the problem seems far from straightforward
[Wae+14], and one commonly believes that exact optimization is intractable in
general [Chi+10].

4.1.3 Illustration

Let us now illustrate the influence of choosing a particular loss function in the
general context of multivariate prediction.
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Tab. 4.2. Alice and Bob.

a b p(y|x) Ey[L(h(x), y)]
LH LS LF1 ‖·‖2

1 ‖·‖1
2

0 0 .02 .87 .99 .99 3.27 1.30
0 1 .11 .49 .88 .37 1.21 0.93
1 0 .12 .50 .89 .38 1.25 0.94
1 1 .76 .12 0.24 .09 0.27 .24

Tab. 4.3. Alice or Bob?

a b p(y|x) Ey[L(h(x), y)]
LH LS LF1 ‖·‖2

1 ‖·‖1
2

0 0 .02 .53 .98 .98 1.22 1.01
0 1 .46 .49 .54 .49 1.86 0.72
1 0 .44 .51 .56 .51 1.94 0.75
1 1 .08 .47 .92 .32 0.98 0.93

In multi-label classification

Consider a face recognition problem, where the task is to determine the presence or
absence of two people, Alice and Bob, in a picture. We formulate this problem as a
supervised multi-label learning problem, with X the random variable representing
the pictures and Y = (A, B) the random variable that indicates the presence or
absence of Alice and Bob (y = (a, b) P {0, 1}2). We will assume a perfect model of the
conditional distribution p(y|x), from which we will infer Bayes-optimal predictions,
and we will consider the two particular inputs presented in Tables 4.2 and 4.3. Each
time we present the joint probability distribution of the labels given the input, p(y|x),
and compute the risk of each label combination under several loss function, namely
the Hamming loss LH , the subset zero-one loss LS , the F1 loss LF1 , the squared
Manhattan distance ‖·‖2

1 and the Euclidean distance ‖·‖1
2. Each time the minimal

risk is indicated in bold font.

Given the first input, presented in Table 4.2, the uncertainty is rather small in the
distribution of the labels p(y|x), and the mode (1, 1) clearly gathers most of the
probability density. In this situation the Bayes-optimal prediction is the same for all
loss functions, that is h∗(x) = (1, 1).

Given the second input, shown in Table 4.3, p(y|x) expresses a higher uncertainty,
and the labels appear to share a mutual exclusion relationship. Obviously, either
Alice or Bob is present in the picture, but not both at the same time. As expected, the
Bayes-optimal prediction under LS corresponds to the mode of the joint distribution,
(0, 1), while under LH it corresponds to the mode of the marginal distribution of
each label, (1, 1). Indeed, we have that p(a = 1|x) = 0.52 and p(b = 1|x) = 0.54.
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The Bayes-optimal prediction under LF1 coincides with that of LH , but we know
this shall not always be the case. Finally, it appears that ‖·‖2

1 coincides with LH ,
while ‖·‖1

2 coincides with LS . Since limq→0‖·‖ is equivalent to LS , we believe that
somehow a loss function in the form ‖·‖q

p put more emphasis more on the marginal
losses of the labels when q > p, and more on the joint loss of the labels when
q < p.

We believe that both decomposable and non-decomposable loss functions are of
interest, and any loss function is valid as long as it is meaningful for the problem
at hand. For example, in the picture in Table 4.3 it is interesting to know that i)
Alice or Bob may be present in the picture, and also ii) only one person is present in
the picture. Under Hamming loss, we have information i) but not ii). Under subset
zero-one loss we have part of information i) and part of information ii). Necessarily,
when making a prediction one has to compress a whole distribution p(y) into a single
answer h∗, which implies loosing some information. Somehow the loss function
decides which information is the most important to keep.

What can we conclude from this example? Well, as we already stated, when the
relation between X and Y is deterministic (i.e. p(y|x) is a Dirac), then choos-
ing one loss function or another yields the same prediction, thus it makes sense
to use the most convenient one (such as Hamming loss). When this relation is
non-deterministic, you have two options. You can either i) consider that there is
intrinsically a deterministic relationship in the problem at hand, but you only have
noisy data. In that case you can work on your data to remove that noise and/or
add additional input to make the relationship deterministic. Or ii) you can consider
that the relationship is intrinsically non-deterministic, in which case the choice of a
particular loss function is not harmless. We believe that in many machine learning
situations this relation is non-deterministic by nature, and maybe people in the
machine learning community should pay more attention to the loss function they
use and its consequences, especially in the multi-variate setting. A popular challenge
in machine learning recently is face completion [Den+09], where face images are
split into two parts, and the goal is to reconstruct the right part of the image given
the left part. Obviously there is not always enough information given by one side of
an image to predict exactly the opposite side. Maybe then the consistency between
the predicted pixels is more important that the marginal accuracy of each individual
pixel?
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Fig. 4.1. Illustration of different loss functions in univariate regression (y fixed).

In multivariate regression

In uni-variate regression problems, the most common loss function is the squared
errorsqu. error |h − y|2, which is often chosen not because it is a meaningful distance measure,
but because it has nice mathematical properties such as everywhere differentiability.
However, one might consider other loss functions such as the absolute errorabs. error |h − y|1,
or the zero-one error0/1 error |h − y|0, which yields 1 if h = y and 0 otherwise1.

A common misconception is that the Bayes-optimal prediction h∗ under any of these
loss functions is the same. This is clearly not true. Indeed, with y fixed, the minimum
of all these loss functions is found at the same value of h. However, in the standard
supervised learning framework, it is the expected loss (4.1) over all the possible
values of y that is minimized. Unless the relation between y and x is deterministic
(i.e. p(y|x) is a Dirac), the risk-minimizing prediction under different loss functions
does not necessarily coincide. It turns out that the optimal prediction under the
squared, absolute and zero-one error is respectively given by the mode, the median,
and the mean value of Y . In probability distributions for which these characteristics
coincide, e.g. Gaussian distributions, the Bayes-optimal predictions h∗ will be the
same under these loss functions. However this may not be the case in general
distributions, as seen in Figure 4.2. Thus, even in the uni-variate output setting,
choosing a particular loss function over another is not harmless and has a direct
impact on the Bayes-optimal prediction.

In multivariate regression problems, a.k.a multi-output regression, the same situation
occurs. Typically, the most common loss function is the squared Euclidean distance
‖h − y‖2

2 [BF97], which reduces to the Hamming loss in binary output spaces.
However, other loss functions may be considered, such as ‖y − h‖0

2 which reduces to
the subset zero-one loss in binary output spaces. And why not ‖y − h‖2

1 the squared
Manhattan distance, or ‖y − h‖1

2 the Euclidean distance ? Any such loss function is

1Note that this convenient formulation of the zero-one error requires to define 00 = 0, otherwise it is
expressed as limq→0 |h − y|q.
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Fig. 4.2. Illustration of different loss expectations in univariate regression. The corresponding Bayes-
optimal prediction h� is respectively given by the mode (1), the median (0.3) and the mean
(0.51).

expressed as the q-th power of the Lp norm of y − h, which takes the general form
of

‖y − h‖q
p =

⎛
⎝ m∑

j=1
|hj − yj |p

⎞
⎠

q
p

.

Clearly, in situations where p = q such a loss function decomposes over the labels and
does not require to model label dependencies. When q = 0, it does not decompose
over the labels and explicitly requires to model p(y), however it is very a difficult
loss function to minimize. Interestingly, in other settings (0 < p 
= q > 0) this loss
function does not decompose over the labels either, and thus somehow must take into
account label dependencies. To the best of our knowledge, such loss functions did
not receive much attention so far, and we believe they may be worth studying. We
also believe that finding risk-minimizing predictions under these loss functions must
be more feasible that under subset zero-one loss. A straightforward minimization
method may be the standard back-propagation algorithm to reach a local-minima of
the risk, the partial derivative of these loss functions having the general form

∂‖y − h‖q
p

∂hi
= q(hi − yi)|hi − yi|p−2

⎛
⎝ m∑

j=1
|hj − yj |p

⎞
⎠

q
p

−1

.

Figure 4.4 illustrates the impact of minimizing different loss functions in multivariate
regression, with an image reconstruction task. Clearly choosing a decomposable
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Fig. 4.3. Illustration of different loss functions in multivariate regression, with m = 2 (y fixed). Loss
functions in the diagonal ((b), (f) and (j)) are label-wise decomposable.
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Fig. 4.4. Illustration of different loss functions for image reconstruction on MNIST. The problem
is cast as a multivariate regression problem, where the top 60% pixels of the image are
learned from the remaining lower 40% (i.e. X = R

12×28, Y = R
16×28). From left to right

we respectively display the true pixel values of 10 test images, and the pixels recovered
by minimizing the ‖·‖2

2, ‖·‖1
2, ‖·‖0.5

2 and ‖·‖0.1
2 loss functions with a linear model and batch

stochastic gradient-descent, i.e. tanh perceptrons. Clearly the loss function has an effect
on the global consistency between the predicted pixels, with the decomposable MSE loss
function ‖·‖2

2 producing highly blurred images, while the ‖·‖0.1
2 loss function, closer to

zero-one loss, produces less blurry images.
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loss function such as the MSE is questionable in this setting, as the conditional
dependency between the pixels is not taken into account in the output. Deciding on
an alternative loss function in this context is far from trivial [WB09]. An interesting
approach was recently proposed by Goodfellow et al. [Goo+14], which consists
in training simultaneously two adversarial models: a first model which generates
images, and a second models which discriminates these images from the original
images in the dataset. As training progresses, the second model learns a specific loss
function, which the first model seeks to minimize. This approach is very convenient
as it solves at once both the problem of generating images and defining a loss
function that makes sense in this context. This generative approach (i.e. sample
images from p(y)) is easily extended to discriminative learning (i.e. sample images
from p(y|x)), and shows promising results [LKC15; RMC15].

4.2 Meta-learning approaches

Many approaches to multi-label classification intend to exploit label dependence
by combining several models learned independently over different input/output
spaces, which we call meta-learning2. Meta-learning approaches usually follow an
intuitive scheme, such as chaining (X ���� Y1, then X × Y1 ���� Y2, . . . ), stacking
(X ���� Y, then Y ���� Y), ensemble learning, or a combination of these. Most often
such approaches are motivated by intuitive rather than theoretical justifications,
e.g. chaining must take into account label correlations, or stacking must correct
wrong label co-occurrences. Moreover, a concrete connection between the resulting
model and the loss to be minimized is rarely established, implicitly giving the
misleading impression that the same method can be optimal for different loss
functions [Dem+12]. And yet, meta-learning approaches can lead to competitive
results in terms of several popular loss functions such as Hamming loss or subset
zero-one loss, sometimes even better than the Bayes-optimal approach BR or LP.
This observation is interesting, and we will give a brief discussion on this matter
after we introduced the main meta-learning schemes.

4.2.1 Binary Relevance

The most simple and intuitive approach to multi-label classification is the so-called
binary relevanceBR (BR) method, which decomposes the MLC problem into m indepen-
dent binary problems, i.e. one independent classifier for every label,

hBR(x) = arg max
y

m∏
i=1

p(yi | x).

2In the literature these are sometimes called problem transformation methods[TK07]
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The BR scheme is intuitive and conveniently simple to implement, and indisputably
yields Bayes-optimal predictions under the Hamming loss. Still, it is often criticized
for its strong independence assumption, i.e., it ignores label dependencies. This
argument is often found as a ground truth in the literature, and comes with the
idea that BR can be improved by incorporating label dependencies into the learning
scheme [CMM12], without much consideration about which loss function is to be
minimized. A comprehensive discussion on this matter can be found in [Dem+12].

However, in some experimental studies it can be found that BR is not such a weak
approach, as it frequently yields competitive results in terms of complex loss functions
such as the F -measure or the subset zero-one loss [Lua+12], although it is clearly
not designed to minimize such loss functions. This surprising situation is somewhat
similar to that of the Naive Bayes approach in the context of standard classification,
which is also based on independence assumptions. In both cases, when the learning
problem is too hard or when the training samples are too few, a strong biased
estimator may be preferable to a weak unbiased one, i.e. maxy p(y)∏xi

p(xi|y)
instead of maxy p(y|x) for NB, and maxy

∏
yi

p(yi|x) instead of maxy p(y|x) for
BR.

4.2.2 Label Powerset

A second intuitive approach to multi-label classification is the so-called label powerset
LP (LP) method, which deals with the MLC problem as a standard classification problem,

by considering each possible label combination as a particular class,

hLP (x) = arg max
y

p(y | x).

The LP scheme obviously corresponds to exact MAP inference, and therefore is
tailored to minimize the subset zero-one loss. Although this approach may seem
unfeasible due to a potentially exponential number of classes (2m label combinations
in the worst case), in practice it can perform reasonably well even on data sets with
large label sets (up to the hundreds). This is because in usual multi-label data sets
the number of positive labels per example is relatively low, resulting in many label
combinations which never occur in practice, and an effective number of classes much
lower than the exponential capacity.
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4.2.3 Chaining

A very intuitive meta-learning scheme for MLC is the chaining approach, which gave
rise to several popular instantiations. The most straightforward one is the so-called
classifier chainCC (CC) method proposed in [Rea+09; Rea+11], which consists in
chaining m binary classifiers, one per label, in a fixed predefined order so that
each model incorporates the previous labels as additional input features, i.e. h1(x),
h2(x, y1), h3(x, y2, y3), and so on. During the learning phase each classifier is
built independently from the training samples to minimize the classification error,
resulting in the following mappings,

hlearned
CC (x, y<i)i = arg max

yi

p(yi | x, y<i),

where y<i denotes the i − 1 first labels in the chaining. At inference time the
label terms y<i are obviously not available, so the predictions are made iteratively
according to the chaining order and the label values are substituted by the output of
the previous classifiers in the chaining. The resulting X ���� Y mapping is expressed
as a recursive combination of the learned mappings, that is,

hfinal
CC (x)i = hlearned

CC (x, hfinal
CC (x)<i)i,

where hfinal
CC (x)<i is the output of the i − 1 first classifiers in the chaining. Despite

the simplicity of this approach, it is not clear which loss function is minimized at the
end by CC. However, it is possible to compute tight upper-bounds of the worst-case
regret of CC with respect to the Hamming loss and the subset zero-one loss, which
is done in [DWH12]. As a result it appears that the regret is quite high in both
cases, suggesting that CC can yield a poor performance for both loss functions.
Nevertheless, CC seems to be more appropriate for the subset zero-one loss than the
Hamming loss, with a lower worst-case regret.

A first variant of CC is the so-called Bayesian chain classifierBCC (BCC) model proposed
in [Zar+11; Suc+14], where the chaining follows a particular BN structure learned
from training data to encode a dependence structure among the labels. The chaining
scheme is essentially the same, except that i) the chain ordering now follows the
DAG ordering, and ii) each classifier incorporates only the parents of the target label
in the DAG as additional features, which reduces the input space of each classifier
compared to CC. The DAG skeleton is typically restricted to be a Chow-Liu tree
[CL68], and a root node is picked at random to define a chaining order. This method
shows competitive results compared to BR, without a significant improvement
over CC. Admittedly the learned DAG structure can only represent unconditional
label dependence, and just like CC the loss function minimized in the end remains
unknown.
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A very similar approach is followed by Zhang and Zhang [ZZ10], who learn a
BN structure over the residuals of binary classifiers. The proposed method, called
multi-label Learning by Exploiting lAbel DependencyLEAD (LEAD), starts by building a
BR model, and continues by learning a BN structure on the error residuals of the
labels. Then, a the chain of classifiers is trained according to the DAG structure,
as in BCC. The essential difference with LEAD is that the resulting DAG encodes
a conditional independence model for p(y | x), where the DAG in BCC encodes a
marginal dependence model for p(y). The independence model resulting from the
DAG in LEAD can be interpreted as a perfect map under two assumptions: i) p(y | x)
is faithful to a DAG; and ii) the classification error on each label is independent of
the input features. However, just like CC and BCC, the loss function minimized at
the end by LEAD is unknown.

A different approach is proposed in [CMM12], called binary relevance plusBR+ (BR+).
This approach does not depend on a particular chaining order, but can still be
considered a chaining approach in our view. As in CC, m binary classifiers are
learned from the training samples to minimize the classification error, but this time
each model incorporates all the other labels as additional input features. Each
classifier results in the following mapping,

hlearned
BR+ (x, y−i)i = arg max

yi

p(yi | x, y−i),

where y−i denotes the y vector deprived of its i-th element the label yi. At inference
time the label terms y−i are substituted by the output of a BR classifier, following a
two-stage process. The resulting X ���� Y mapping expresses a combination of the
following mappings,

hfinal
BR+(x)i = hlearned

BR+ x, hBR(x)−i)i,

where h�
BR(x)−i is the output of the BR classifiers for every label except yi. Again,

the loss function minimized at the end by BR+ is unknown.

4.2.4 Stacking

A second intuitive scheme for meta-learning is the stacking approach, which resem-
bles to chaining for inference, but follows a different learning scheme. The main
idea of stacking is to train several layers of models on top of each other, e.g. h1(x),
then h2(x, h1(x)) and so on. One such approach is adopted in [GS04], where the
output of a first BR classifier is reused as an input feature by a second BR classifier,
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along with the full original feature set. This approach is sometimes called meta
stackingMS (MS), and is expressed as follows,

hMS(x) = arg max
y

m∏
i=1

p(yi | x, hBR(x)).

Note that MS closely resembles the BR+ approach, however in BR+ the label values
used as input to train the second layer of classifiers come from the training set, i.e.
(x, y−i) ��� yi, while in MS they come from BR predictions, i.e. (x, hBR(x)) ��� yi.
Clearly MS can be considered as a BR classifier with additional feature functions,
and minimizes the Hamming loss by design.

A different stacking approach is adopted in [Wan+14], where a Bayesian Network is
stacked on top of BR predictions to perform MAP inference. This approach, which
we call BN+BN+ , results in the following mapping,

hBN+(x) = arg max
y

p(y | hBR(x)).

The BN structure and parameters are learned from the both the label values and the
BR predictions to model p(y, hBR(x)), and exact MAP inference is performed. Under
the condition that hBR(x) captures all the relevant information from the feature
set to predict the labels, BN+ yields Bayes-optimal predictions under the subset
zero-one loss. This condition is provably not guaranteed in general. Nevertheless,
BN+ is clearly tailored towards subset zero-one loss minimization.

4.2.5 Ensemble learning

Essentially, the ensemble learning scheme consists in learning several X ���� Y
mappings, which are aggregated according to a predefined voting scheme to form
a final mapping hens. That is, {h(j)}s

j=1 is an ensemble of mappings learned from
data, and f : Ys ��� Y is an aggregation function, the voting scheme, such that
hens = f(h(1), . . . , h(s)). In the context of multi-label classification, adopting a
particular voting scheme can be seen as minimizing the risk of a particular loss
function over the ensemble of predictors, that is,

hens(x) = arg min
ŷ

s∑
j=1

Lens(ŷ, h(j)(x)).

This minimization problem is somewhat similar to the MLC problem itself, with
2m − 1 parameters to estimate in the worst case. Clearly, adopting a particular
voting scheme without considering which loss function it minimizes is not harmless.
Even if the individual mappings in {h(j)} are learned to minimize a particular loss
function, the actual loss function minimized at the end by the ensemble will also
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depend on the voting scheme. Adopting a majority vote over each individual label
will bring the final prediction to the marginals, in a BR fashion, while a majority
vote over the global label combinations will bring the predictions to a MAP estimate,
in a LP fashion. Using the same loss function for both training and voting seems
a reasonable choice (e.g. BR voting over BR models), however a combination of
two different loss functions may result in an ensemble model that is much harder to
interpret (e.g. BR voting over LP models).

A straightforward instantiating of ensemble learning is adopted in Read et al.
[Rea+09], who introduces the ensemble of classifier chainsECC (ECC) method in or-
der to strengthen CC. Essentially, ECC combines the prediction of several CC models
trained over different random label orderings and different random training popula-
tions. The voting scheme adopted by ECC is a label-wise calibrated majority vote,
that is,

hECC(x)i = I

⎛
⎝1

s

s∑
j=1

h
(j)
CC(x)i ≥ t

⎞
⎠ ,

where I(·) is the standard {False, True} ��� {0, 1} mapping and t is a fixed thresh-
old in [0, 1]. While ECC significantly improves the performance of CC for several
evaluation measures, it is even less clear which loss function it actually minimizes.

A second popular approach to MLC which uses ensemble learning is the so-called
RAndom k-labELsetsRAkEL (RAkEL) method proposed in [TV07; TKV11]. RAkEL was
initially proposed in order to take into account label correlations, while at the same
time avoiding the computational burden of LP. Essentially, it consists in training
several LP classifiers over randomly drawn and possibly overlapping label subsets
of fixed size k, e.g. (Y1, Y3), (Y2, Y5), (Y3, Y4) and so on when k = 2. At inference
time the ensemble of predictions are aggregated in the same way ECC does, with a
marginal calibrated majority vote, by considering for each label only the classifiers
which include that label as an output. It is rather difficult to state which loss function
RAkEL minimizes at the end, however it constitutes a standard MLC methods which
prove to be very effective under several evaluation measures, especially the Hamming
loss.

Interestingly, several other MLC methods rely on a voting scheme, although not in
the context of ensemble learning. These include for example the multi-label k-nearest
neighboursML-kNN (ML-kNN) method from [ZZ07], which extends the standard k-nearest
neighbour method to multi-label classification. Here a voting function is employed
to aggregate the label combinations observed for k nearest neighbours in the train-
ing set, i.e. {y(j)|x(j) P kNN(x)}. If we consider these label observations as an
empirical estimate of p(y|x), then ML-kNN minimizes exactly the loss corresponding
to the voting scheme. The default instantiation of ML-kNN proposed in [ZZ07]
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adopts a marginal MAP voting scheme, and therefore is tailored for Hamming loss
minimization.

Another set of approaches which rely on a voting scheme are those based on samples
estimates, such as the conditional dependency network (CDN) model in [GG11],
or the probabilistic classifier chain (PCC) model in [DWH12] with Monte-Carlo
inferenceMonte-Carlo

sampling

3. Both approaches learn a probabilistic model of p(y|x), and are able to
produce at inference time a set of samples {y(j)} drawn from this joint conditional
distribution given a particular input x. Once a sufficient number of samples is
obtained, applying a voting scheme theoretically yields a Bayes-optimal prediction
under the corresponding loss function. Admittedly, the major drawback of such
approaches is that minimizing an arbitrary loss function requires a lot of samples to
obtain a proper estimate of p(y|x), which in turn makes the voting process harder.

4.2.6 Discussion

As stated previously, the motivation behind meta-learning approaches most often
comes from intuitive rather than theoretical justifications, sometimes without paying
much attention to which loss function is to be minimized. However, such approaches
can perform well in practice for several popular loss functions, sometimes better
than a theoretically Bayes-optimal approach (e.g. BR for Hamming loss or LP for
subset zero-one loss). A very common interpretation is then "approach A beats
approach B by modeling label dependencies", which is rather ambiguous in our view.
We may now give three potential explanations for why such approaches can result in
improved classification performance, which do not relate to label dependence.

First, the (unknown) loss function minimized by a meta-learning approach can be
interpreted as a surrogate for a more complex loss function, which would be too
difficult to minimize directly. Given that the regret between the surrogate and the
target loss is not too high, learning a biased but robust model can be preferable
to learning a theoretically Bayes-optimal but weaker model. This can explain why
such approaches sometimes outperform a theoretically Bayes-optimal approach for
complex loss functions, such as the F -loss or the subset zero-one loss.

Second, constructing a high-level mapping from a composition of lower-level ones
provides a larger hypothesis space and leads to richer models, a.k.a. deep models.
While the BR approach is Bayes-optimal for the Hamming loss, in practice it involves
finding an optimal mapping X ���� Y among a limited hypothesis space, for example
by considering only linear separations with logistic regression models. By stacking
a second layer of mapping Y ���� Y on top of BR, also with linear separations, the

3Both CDN and PCC are describe in detail in Section 4.3
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hypothesis space considered in the final X ���� Y mapping includes non-linear separa-
tions, resulting in a much richer model. Building rich functions from a composition
of many simpler functions is the basic idea of deep learning [LBH15], which prove to
be a very efficient approach [LT16] achieving state-of-the-art performance in many
complex classification tasks.

Third, several meta-learning approaches follow an ensemble learning scheme with
majority voting. Ensemble learning is known to improve classification performances
when the voters are diverse, which is achieved in standard classification by learning
several models from different input spaces and different training populations, e.g.,
random feature selection [Ho95] and random instance bagging [Bre96]. In multi-
label classification the output space is multi-dimensional as well, so diversity can also
be achieved by learning mappings to different output spaces (the RAkEL approach),
or by following different chaining orders (the ECC approach).

4.3 Plug-in approaches

Plug-in approaches deal with the problem of finding h� with an explicit two-stage
process: i) learning, which consists in training a probabilistic model of p(y|x); and
ii) inference, which consists in applying a decision rule at test-time on the probability
estimates to derive Bayes-optimal predictions h�(x) = arg minŷ

∫
y L(ŷ, y)p(y|x)dy.

This decomposition allows a principled analysis of the resulting mapping, and one
can deal with each sub-problem independently, that is, any probabilistic model can
be used to solve the estimation problem, and any inference algorithm can be used
to solve the decision problem. However, the main drawback of such approaches
is a potentially high cost for inference, that is, for each input x a new decision
problem must be solved. To deal with this problem, plug-in approaches most often
resort on biased probabilistic models for which exact inference is tractable (e.g.
tree-structured models), or approximate inference algorithms (e.g. loopy belief
propagation). In the following we will review several popular approaches which
belong to the plug-in family, with a particular focus on the underlying probabilistic
independence model.
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X1 X2

Y1 Y2 Y3

Fig. 4.5. DAG representation of a PCC model, which imposes no structural constraint on p(y|x).

4.3.1 Probabilistic classifier chains

Introduced by Dembczynski et al. [DCH10], probabilistic classifier chain
PCC

(PCC)
models simply apply the chain rule of probabilities to represent a joint conditional
distribution p(y|x) from a set of marginal conditional distributions,

p(y|x) =
m∏

i=1
p(yi | x, y<i),

where y<i denotes the y vector deprived of all elements indexed from i to m. Such
a representation nicely decomposes the learning problem into m local distribution
estimation problems, which may be solved independently, and obtaining probability
estimates from p(y|x) is simple, with a linear complexity in the number of labels.
However, the inference problem with PCC remains unchanged. In [DCH10], PCC is
applied to multi-label classification with an exact MAP inference procedure in O(2m),
thereby minimizing the subset zero-one loss. Due to the high complexity of inference,
in practice such an approach can not be applied to problems with more than tens
of labels. In [Kum+12; DWH12] approximate inference procedures are discussed,
based on a sampling-voting scheme4 with fixed sample size, or a beam-search on the
tree structure of PCC for mode approximation with theoretical guarantees.

Interestingly, PCC models can be easily extended into what we will call conditional
Bayesian networks. Consider a BN model of the joint distribution p(x, y), in which
the label nodes are not allowed to appear as children of feature nodes. Then, the
conditional distribution of the labels is clearly expressed as

p(y|x) =
∏

YiPY
p(yi|paYi

),

which is not affected by the induced subgraph over X. Therefore we may impose it
to be empty without adding any constraint to p(y|x). By making this conditional BN
fully-connected (except for the edges between features), we obtain an unconstrained
conditional probabilistic model, PCC, which follows the ordering of the labels in the

4As discussed in Section 4.2.5.
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X1 X2

Y1 Y2 Y3

Fig. 4.6. A DN of the joint distribution p(x, y), whose local distributions are p(x1|x2, y1), p(x2|x1, y2),
p(y1|x1, y2), p(y2|x2, y1, y3), and p(y3|y2).

DAG (see Figure 4.5). Of course, conditional BN models with sparse structures may
also be considered in order to facilitate the inference problem.

4.3.2 Conditional dependency networks

Introduced by Heckerman et al. [Hec+00], dependency networks
DN

(DNs) form an inter-
esting family of graphical models, which encode a joint distribution p(v) indirectly
via Gibbs sampling. Formally, a DN consists in an undirected5 graphical structure G
over V, together with a set of parameters that encode the conditional probability
distribution of each variable given its neighbours, p(vi|nbVi). The independence
model of a DN is exactly that of a Markov network, and is read from G by using the
u-separation criterion.

Under the strict positivity condition (p > 0), a random Gibbs sampling procedure
from the local distributions p(vi|nbVi) is guaranteed to converge to samples drawn
from the probability distribution p(v). Starting from any initial state v, random Gibbs
sampling consists in repeatedly picking a variable at random, say Vi, and updating
its value by sampling from p(vi|nbVi). After a sufficient number of iterations, the
final sample v is guaranteed to follow the joint distribution p(v). The correctness
DNs is due to the independence model encoded in G, which implies that p(vi|v−i) =
p(vi|nbVi).

Dependency networks are easily extended to conditional dependency networks
CDN

(CDNs),
which model a conditional probability distribution p(y|x). It suffices to encode only
the local conditional distributions of the nodes in Y, which makes the adjacencies
between the features X useless in G. The Gibbs sampling procedure is then essentially
the same, except that x is fixed and only y samples are produced, which are
guaranteed to be drawn from the probability distribution p(y|x). The clear advantage
of using a CDN for multi-label classification is that the learning process is relatively
simple. Each local probability distribution can be estimated independently by

5Note that we consider here the family of consistent DNs, which can be described with undirected
graphs. General DNs, including non-consistent ones, are usually described with directed graphs in
which multiple edges and cycles are allowed, and local distributions in the form pi(vi|paVi

).
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X1 X2

Y1 Y2 Y3

Fig. 4.7. A fully-connected CDN, which imposes no structural constraint on p(y|x).

solving a binary probabilistic classification problem, for which plenty off-the-shelf
practical solutions exist. However, inference with CDNs is far from trivial. First, the
computational cost of Gibbs sampling can be rather high, with a number of samples
required to obtain a good estimate of p(y|x) exponential to the number of labels.
Second, obtaining a risk-minimizing prediction h�(x) from these samples is very
costly6, and approximate voting schemes must be employed in practice.

In [GG11], fully-connected CDN structures are employed, like the one in Figure 4.7,
which impose no constraint on the expression of p(y|x). Standard binary logistic
regression models are employed to learn the marginal conditional distributions
p(yi|x, yi), and a heuristic voting scheme is introduced to perform approximate MAP
inference via Gibbs sampling.

4.3.3 Bayesian network classifiers

Introduced by Bielza et al. [BLL11], multi-dimensional Bayesian network classifiers
MBC (MBCs) are specific BNs models of the joint distribution p(x, y), in which the label

nodes are not allowed to appear as children of feature nodes. Due to this constrained
structure, a particular graph of interest is the so-called label-bridge subgraph, i.e. the
original graph deprived of all the edges between the feature nodes. The label-bridge
subgraph appears to be a sufficient structure to characterize the independence model
of the labels conditioned on the feature set X, and each of its maximal connected
component characterizes a disjoint factor of the conditional joint distribution p(y|x).
Given that such a factorization can be identified, the MAP inference problem can
be solved much more efficiently by a decomposition of the learning and inference
problems into simpler independent sub-problems. For example, considering the MBC
structure in Figure 4.8 we have

arg max
y

p(y|x) = arg
[
max

y1
p(y1|x1) max

y2,y3
p(y2, y3|x2)

]
.

6See Section 4.2.5 on ensemble learning and voting schemes complexity.
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X1 X2

Y1 Y2 Y3

(a) MBC graph.

X1 X2

Y1 Y2 Y3

(b) Label-bridge subgraph.

Fig. 4.8. A MBC graph and its label-bridge subgraph. It appears that {Y1} ⊥⊥{Y2, Y3} | X, and
therefore p(y|x) factorizes as p(y1|x)p(y2, y3|x). These two factors are identified by the
maximal connected components of the label-bridge subgraph.

X1

Y1 Y2

(a) General BN graph.

X1

Y1 Y2

(b) MBC-constrained graph.

Fig. 4.9. A BN graph where Y1 ⊥⊥ Y2 | X, which can not be represented by a MBC graph.

The property of label-bridge decomposability in MBCs relates closely to the work we
have achieved during this thesis, as we will see in Chapter 5. However, label-bridge
decomposition does not provide a general characterization of every possible disjoint
factorization of p(y|x). This is shown in Figure 4.9, where the independence relation
Y1 ⊥⊥ Y2 | X1 encoded in the BN can not be encoded in a MBC without violating
either Y1 ⊥
⊥ X1 or Y2 ⊥
⊥ X1. In Chapter 5 we will present several theoretical results
to characterize the set of all irreducible disjoint label factors of p(y|x), without
assuming the existence of any underlying probabilistic graphical structure.

In order to simplify both learning and inference, Antonucci et al. [Ant+13] consider
a restricted class of MBC structures where the label subgraph (induced over Y) is
a tree and the feature subgraph (induced over X) is empty. The first constraint
imposes a low-treewidth in p(y|x), while the second constraint imposes that all
features are conditionally independent given the labels, thus extending the naive
Bayes assumption to the multi-dimensional output setting. Under these additional
constraints, exact inference algorithms such as belief propagation can be used to
solve efficiently the MAP inference problem.

4.3.4 Conditional Random Fields

Introduced by Lafferty et al. [LMP01], conditional random fields
CRF

(over Y)

(CRFs) form a family
of undirected graphical models which represent a conditional joint distribution
p(y|x). In the initial formulation, a CRF structure consists in an undirected graph G
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Y1 Y2 Y3

p(y|x) = φ1(y1, y2, x)φ2(y2, y3, x)

Fig. 4.10. A CRF over Y, which encode the independence relation {Y1} ⊥⊥{Y3} | {Y2} Y X.

X1 X2

Y1 Y2 Y3

p(y|x) = φ1(x1, x2)φ2(x1, y1)φ3(x2, y2)φ4(y1, y2)φ5(y2, y3)

Fig. 4.11. A CRF over X Y Y, which extends the one from Figure 4.10 with the independence relations
{Y1} ⊥⊥{X2, Y3} | {X1, Y2} and {Y2, Y3} ⊥⊥{X1} | {X2, Y1} and {Y3} ⊥⊥ X Y{Y1} | {Y2}.

defined over the node set V = Y, and the factorization of the conditional distribution
p(y|x) is given by

p(y | x) =
∏

CiPClG

φi(ci, x),

where ClG is the set of all cliques in G. The semantics of such a CRF are then very
similar to those of a Markov network, and just like Markov networks they must rely
on the Hammersley-Clifford theorem for soundness, i.e. p > 0. The independence
model induced by the graph is given by the u-separation criterion, and consists only
in conditional independence relations in the form A ⊥⊥ B | C Y X with A, B, C
disjoint subsets of Y.

Most often, a second formulation of CRFs
CRF

(over XY)

is found in the literature, with G an
undirected graph defined over the node set V = X Y Y and a factorization of p(y|x)
given by

p(y | x) =
∏

CiPClG

φi(ci).

In such CRFs the graph also encodes interactions between X and Y, which can
reduce further the number of parameters required to model p(y|x).

However, under such an interpretation of CRFs, G does not necessarily provide a
sound probabilistic independence model. An example is given in Figure 4.12, where
the factorization encoded in first graph imposes a strong structural constraint on
p(y|x), and yet does not induce any conditional independence relation. Clearly, here
the (missing) adjacencies between features affect the factorization of p(y|x), without
affecting the underlying independence model.
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Y1

X1 X2

(a) p(y|x) = φ1(x1, y1)φ2(x2, y1)

Y1

X1 X2

(b) p(y|x) = φ1(x1, x2, y1)

Fig. 4.12. Two CRFs over X Y Y which encode p(y|x). The edges between features in X clearly
constrain the joint distribution, without necessarily impacting the independence model.

Y1

X1 X2

(a) p(y|x) = φ1(x1, x2, y1)

Y1

X1 X2

(b) p(y|x) = φ1(x1, x2, y1)

Fig. 4.13. Two LWF chain graphs which encode both p(x) and p(y|x). The edges in the X components
do not impact the factorization of p(y|x).

Interestingly, by making the edges between X and Y directed from the features to
the labels, we obtain a sound probabilistic independence model under the LWF chain
graph interpretation. As shown in Figure 4.13, in such a LWF chain graph the edges
between the features impact only the factorization of p(x) and have no effect on
p(y|x).

By considering a restricted class of LWF chain graphs, with no edges between features
and directed edges only from features to labels, we obtain a sound probabilistic
independence model of p(y|x), with conditional independence relations in the
form A ⊥⊥ B | C Y X \ (A Y B Y C) with A, B, C disjoint subsets of X Y Y and
(A Y B) X Y 
= ∅.

Y1 Y2 Y3

X1 X2

(a) LWF chain graph over X Y Y.

Y1 Y2 Y3

X1 X2

(b) Closure graph of Y.

Fig. 4.14. An LWF chain graph along with the closure graph of the chain component Y, which encodes
a factorization of p(y|x) over its cliques.
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While significant work has been done on structure learning for generative models,
only a few papers address CRF structure learning [BG10]. In many MLC approaches
based on CRFs the graph is tacitly assumed to be fixed, and MAP inference is
performed, thereby minimizing the subset zero-one loss. Early applications of CRFs
often assume loop-less structures such as chains or trees for practical reasons, to
simplify both parameter learning and inference [LMP01]. For example, HMM-
like CRFs define one potential for each label pair φ(yi, yi+1), and one potential
for each label-feature pair φ(yi, xi). Recent applications of CRFs have used more
general graphical structures, however inference remains intractable in general, and
approximate algorithms must be employed in practice. Interestingly, inference with
CRFs can be formulated as a large-margin optimization problem that relates to
Structural SVMs (S-SVMs) [Tso+05]. For a comprehensive review of CRFs, the
reader is directed to Sutton and McCallum [SM12], and for S-SVMs to Joachims
et al. [JFY09].

4.3.5 Sum product networks

Introduced by Poon and Domingos [PD11], sum-product networks
SPN

(SPNs) are proba-
bilistic graphical models of a joint distribution p(v), though not in the classical sense.
In classical PGMs, the graphical structure G is defined over a node set corresponding
to the random variables in V. In a SPN, the joint distribution p(v) is constrained
by a directed tree structure7 with three types of nodes: sum, product and leaf.
Each node Ni represents a local joint distribution pi(vi) over a subset of variables
Vi Ď V called its scope8. Note that each local distributions is underlined pi(vi)
since it is only defined within the context of the current node Ni, and shall not be
confused with the marginal distribution p(vi). The joint distribution p(v) encoded
by the SPN corresponds to the local distribution of the root node, and decomposes
recursively into products and weighted sums of local distributions according to the
SPN structure.

Formally, the local distribution of a product node Ni is defined as a product of the
local distributions of its children CHNi ,

pi(vi) =
∏

NjPCHNi

pj(vj), (4.2)

7Note that SPNs can also be represented as DAGs, which are essentially compressed SPN trees [RG16].
8Note that we consider normal SPNs without loss of generality [ZMP15][Theorem 3],

[Peh+15][Theorem 3].
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a = 0 a = 1

bc = 00 bc = 01 bc = 10 bc = 11
+

N6

+

N7

b = 0 b = 1 c = 0 c = 1

0.4 0.60.7 0.3

0.2 0.3 0.1 0.4

0.2 0.8 0.9 0.1

Fig. 4.15. A SPN model of a joint distribution p(a, b, c) of three binary random variables.

where the scopes of the child nodes {Vj | Nj P CHNi} form a partition of the scope
of the product node Vi. On the other hand, the local distribution of a sum node Ni

is defined as a weighted sum of the local distributions of its children CHNi ,

pi(vi) =
∑

NjPCHNi

θi,jpj(vj), (4.3)

where the weights are normalized positive values,
∑

j θi,j = 1, and every child node
shares the same scope as the sum node, Vj = Vi. Finally, a leaf node Ni represent
a probability distribution pi(vi) by any mean, e.g. a probability table for discrete
variables or a probability density function for continuous variables. An interesting
SPN setting is when the leaf nodes represent deterministic distributions, i.e. pi(vi)
equal to 1 for a particular value vi, and 0 elsewhere9. In this setting, a SPN encodes
the full joint distribution p(v) solely with the parameters Θ corresponding to the
weights of the sum nodes. Such a SPN is presented in Figure 4.15.

Both structure and parameter learning of SPN models remain hard problems [Zha+16].
However, obtaining any joint, marginal or conditional probability in the form p(y|x)
requires only a computational cost linear to the size of the SPN (i.e., the number
of nodes). For example, consider the query p(a = 1, b = 1|c = 0), in the SPN from
Figure 4.15. To compute p(a = 1, b = 1, c = 0), it suffices to set a value 1 to every leaf
node which respect the evidence, like a = 1 or bc = 10, and a value 0 to every leaf
node which violates it, like a = 0 or bc = 11. Then, by unrolling all the computations
encoded in the SPN with a bottom-up pass up to the root node, we obtain

p(a = 1, b = 1, c = 0) = 0.3 × (0.4 × 0.1 + 0.6 × 0.8 × 0.9) = 0.1416.

9A Dirac distribution in the case of continuous variables.
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Similarly, we may compute p(c = 0) with one bottom-up pass

p(c = 0) = (0.7 + 0.3) × (0.4 × (0.2 + 0.1) + 0.6 × (0.2 + 0.8) × 0.9) = 0.66.

Finally, after only two passes through the SPN we get

p(a = 1, b = 1|c = 0) = 0.1416
0.66 = 0.2145455.

This easy marginalization procedure is an interesting property of SPNs, however
MAP inference remains a hard problem in general. In their seminal paper, Poon
and Domingos [PD11] proposed an exact MAP inference procedure with complexity
linear to the size of the SPN, however this procedure was later shown to be wrong
[Peh15].

The latent variable interpretation

A convenient way of interpreting a SPN structure is by re-expressing each local
distribution pi(vi) with respect to the global distribution p(v). Let us first consider a
product node Ni. Because the scopes of the children form a partition of Vi, their
local distributions can be interpreted as marginals of the parent distribution and the
expression (4.2) becomes

pi(vi) =
∏

NjPCHNi

pi(vj).

Therefore, each product node encodes a local independence model of pi with rela-
tions in the form Vj ⊥⊥ Vi \ Vj for every children Nj P CHNi . Such relations are
sometimes called contextual independence relationscontextual

ind.
, and do not necessarily hold in p,

unless the product node is the root of the SPN and pi = p. Second, let us consider
a sum node Ni. Because the weights of each sum node are normalized, these may
be interpreted as the probability distribution of a hidden variable Hi taking values
in {j | Nj P CHNi}, such that θi,j = pi(hi = j). The local distribution of each child
node pj(vj) can be then seen as the conditional distribution pi(vi|hi = j), and the
expression (4.3) becomes

pi(vi) =
∑

NjPCHNi

pi(hi)pi(vi|hi).

Therefore, each sum node corresponds to a mixture model
mixture

model

pi(vi) = ∑
hi

pi(vi, hi)
with a hidden variable Hi. Finally, the local distribution of each node in the SPN can
be expressed as a component of the local distribution of its parent node, up to the
root node of the SPN which encode the whole distribution p(v) = ∑

h p(v, h), with
H the set of all the hidden variables of the SPN. The local probability distribution
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×
pi(a, b, c)

pi(a) pi(b, c)
(a) A SPN product node Ni.

+

pi(hi = 1) pi(hi = 2)

pi(a, b, c)

pi(a, b, c|hi = 1) pi(a, b, c|hi = 2)
(b) A SPN sum node Ni.

Fig. 4.16. Two SPN nodes, a product and a sum node, which respectively decompose a multivariate
probability distribution pi(a, b, c) into a product over disjoint factors, pi(a, b, c) = pi(a)pi(b, c),
or a mixture model with a hidden variable, pi(a, b, c) =

∑
hi

pi(a, b, c, hi).

encoded by each intermediate node Ni can now be expressed with respect to the
global distribution p(v, h)

pi(vi) = p(vi|h(i)
ANi

),

where HANi is the set of all hidden variables introduced by the ancestors of Ni in
the tree, and h(i)

ANi
is the particular value these hidden variables take in the context

of node Ni. Likewise, the local distribution of each hidden variable Hi is expressed
as

pi(hi) = p(hi|h(i)
ANi

).

In the end, we may represent the joint distribution p(v, h) of both the observed and
hidden variables as a Bayesian network with partial probability tables for the hidden
variables in H, which represent the local mixture models encoded by the sum nodes
of the SPN, and compact probability tables for the observed variables in V, which
represent the local independence relations encoded by the product nodes of the SPN.
Such a BN representation is given in Figure 4.17.

Moreover, since we are interested in modeling the marginal distribution
∑

h p(v, h),
Zhao et al. [ZMP15] notice that we may fill up the missing values of the conditional
probability tables of the BN by repeating the same probability distribution, so that
p(hi|h(i)

ANi
) = p(hi). As a result, all the hidden variables are made (unconditionally)

independent of each other, which simplifies the BN structure to a bipartite graph. The
resulting BN is given in Figure 4.18, with conditional probability tables represented
as Algebraic Decision Diagrams (ADDs). In such a representation, both the BN
structure and the probability distribution p(v|h) with ADDs are specified by the SPN
structure, while the probability distribution of the hidden variables p(h) is specified
by the SPN weights Θ. Notice that due to the BN structure p(h) factorizes into∏

hi
p(hi), while p(v|h) factorizes into

∏
vi

p(vi|h).
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H2 H3

H4

H6 H7

A B C

(a) The BN structure of the SPN.

H2
1 2

0.7 0.3
(b) p(h2)

H3
1 2

0.4 0.6
(c) p(h3)

H4
H3 1 2 3 4

1 0.2 0.3 0.1 0.4
2 na na na na

(d) p(h4|h3)

H6
H3 1 2

1 na na
2 0.2 0.8
(e) p(h6|h3)

H7
H3 1 2

1 na na
2 0.9 0.1
(f) p(h7|h3)

A
H2 0 1

1 1 0
2 0 1

(g) p(a|h2)

B
H3 H4 H6 0 1

1

1

{1,2}

1 0
2 1 0
3 0 1
4 0 1

2 {1,2,3,4}
1 1 0
2 0 1

(h) p(b|h3, h4, h6)

C
H3 H4 H7 0 1

1

1

{1,2}

1 0
2 0 1
3 1 0
4 0 1

2 {1,2,3,4}
1 1 0
2 0 1

(i) p(c|h3, h4, h7)

Fig. 4.17. The SPN from Figure 4.15 represented as a BN over V Y H, with H a set of hidden variables
corresponding to the sum nodes of the SPN. The joint distribution p(v, h) is not completely
specified due to the missing values (na) in the probability tables of p(h). However the
marginal distribution p(v) =

∑
h p(v, h) is fully specified, due to the compact representation

of the probability tables for p(v|h).
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A B C

(a) The bipartite BN structure of the SPN.

H2

0.7 0.3

1 2

(b) p(h2)

H3

0.4 0.6

1 2

(c) p(h3)

H4

0.2 0.3 0.1 0.4

1 2 3 4

(d) p(h4)

H6

0.2 0.8

1 2

(e) p(h6)

H7

0.9 0.1

1 2

(f) p(h7)

H2

A A

0 1

1 2

01 0 1

(g) p(a|h2)

H3

H4 H6

B B

0 1

1 2

1 2
3

4 1 2

01 0 1

(h) p(b|h3, h4, h6)

H3

H4 H7

C C

0 1

1 2

1 3
2

4 1 2

01 0 1

(i) p(c|h3, h4, h7)

Fig. 4.18. The BN from Figure 4.15 completed so that p(v, h) is completely specified, and represents
the same marginal distribution

∑
h p(v, h). The probability tables are now represented as

Algebraic Decision Diagrams (ADDs), which encode the local independence relations of the
product nodes in the SPN.
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y1 = 0 y1 = 1 y2 = 0 y2 = 1 y1 = 0 y1 = 1 y2 = 0 y2 = 1

p(h = 1|x) p(h = 2|x)

1 − θ1
1 θ1

1 1 − θ1
2 θ1

2 1 − θ2
1 θ2

1 1 − θ2
2 θ2

2

Fig. 4.19. A SPN model of a conditional joint distribution p(y1, y2|x) with two binary labels, equivalent
to a mixture of conditional Bernoulli distributions as in [Li+16]. Here we have only two
components (k = 2), and θj

i denotes p(yi = 1|x, h = j).

SPNs for multi-label classification

The closest application of SPNs to the MLC problem can be found in [Li+16], where
the joint conditional distribution p(y|x) is represented as a mixture of k conditional
Bernoulli distributions. In such a model a single hidden variable H is introduced,
which takes values in {1, . . . , k}, and within each mixture component the conditional
distribution of labels is assumed to factorize over the whole label set. Therefore, the
conditional joint distribution is expressed as

p(y|x) =
k∑

j=1
p(h = j|x)

n∏
i=1

p(yi|x, h = j).

Such a model can be expressed as a three-layer SPN as the one in Figure 4.19,
in which the weights of the sum nodes are not fixed but inferred from a set of
probabilistic models. More precisely, the p(h = j|x) parameters can be obtained
from a multinomial probabilistic regression, and the p(yi|x, h = j) parameters from
a series of binary probabilistic regressions. Due to the constrained structure of this
SPN, both the learning with a standard expectation-maximization (EM) procedure
and exact MAP inference can be performed, thereby modeling relatively complex
probability distributions at a reasonable cost.

4.3.6 Discussion

While plug-in approaches provide a principled way to deal with the multi-label
classification problem, in practice each approach has to deal with the exponential
blow-up of the output space, either during the learning phase to model p(y|x),
or during the inference phase to obtain h� = arg minh

∑
y p(y|x)L(h, y). Still,
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graphical models seem to be a particularly well suited tool in this context, as they are
able to express structural constraints which reduce both the parameter complexity
and the computational complexity of the problem. In the next chapter we will
introduce a particular structural constraint of p(y|x), that is, its decomposition into a
product of marginal probability distributions called irreducible disjoint label factors.
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5Irreducible label factors

„Any intelligent fool can make things bigger, more
complex, and more violent. It takes a touch of
genius — and a lot of courage to move in the
opposite direction.

— Ernst F. Schumacher
1973

In this chapter we propose a generic approach to identify the unique partition of the
label set into irreducible label factors (ILFs), that is, the irreducible factorization
p(y|x) into disjoint marginal distributions,

p(y|x) =
∏

YF PF
p(yF |x),

where F is a partition of the label set, and each YF is called a label factor. Our ap-
proach draws strongly on the constraint-based structure learning methods discussed
in Chapter 3, and constitutes the major contribution of this Thesis.

In Section 5.1 we introduce formally the concept of irreducible label factors, and
present a series of theoretical results to address the ILF decomposition problem. We
show that a generic procedure exists in the general case with only O(m2) pairwise
conditional independence tests between the labels, then we consider reasonable
assumptions about the underlying probability distribution in order to derive three
practical procedures: 1) ILF-DAG when p is faithful to a DAG; 2) ILF-Inter when p

supports the Intersection property; and 3) ILF-Compo p supports the Composition
property. As a subsidiary result, we show that each of these procedures is also able
to tackle the feature subset selection problem in a principled way.

In Section 5.2 we apply the ILF approach to multi-label classification (MLC) problem
for subset 0/1 loss minimization, with a simple decomposition of the LP scheme. In
Section 5.3 we do the same for F -loss minimization, a.k.a. F -measure maximization,
by decomposing the Bayes-Optimal GFM method. Our conclusions are supported by
carefully designed experiments on synthetic and benchmark data [GAE15; GA16a].
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5.1 Characterizations

In this section, we first introduce formally the concept of irreducible label factors, and
then address the problem of identifying the ILF decomposition a joint conditional
distribution. Since this problem closely relates to the Markov boundary discovery
problem, in a second part we also discuss the feature subset selection problem in
the context of MLC. The resulting procedures for discovering both the ILFs and their
(minimum) feature subsets, termed ILF-DAG, ILF-Inter and ILF-Compo, will then be
subject to experimental validation.

We shall assume throughout that X is the feature set, Y is the label set, U = X Y Y
is the union of both and p is the underlying joint distribution. The proofs of the
Theorems and Lemmas presented here are deferred to the Appendix.

5.1.1 Preliminary materials

We shall now introduce formally the concept of label factor that will play a pivotal
role in the factorization of p(y|x).

Def. 5.1 A label factor is a subset YF Ď Y such that YF ⊥⊥ Y \ YF | X. Additionally, an
irreducible label factor is non-empty and has no non-empty label factor as proper
subset.

The key idea is then to decompose the joint conditional distribution of the labels
into a product of disjoint marginal conditional distributions,

p(y|x) =
∏

YF PFI

p(yF |x).

Algebraic structure

Label factors can be characterized as an algebraic structure satisfying certain axioms.
Let F denote the set of all label factors (LFs for short), and FI Ă F the set of all
irreducible label factors (ILFs for short). It is easily shown that {Y, ∅} Ď F . More
specifically, F can be ordered via subset inclusion to obtain a lattice bounded by Y
itself and the null set, while FI forms a partition of Y.

Thm. 5.1 (LF algebraic structure) If YFi , YFj P F , then YFi Y YFj P F , YFi X YFj P F
and YFi \ YFj P F . Moreover, Y breaks down into a unique partition of irreducible
components, FI .
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X1 X2 X3

Y1 Y2 Y3

Fig. 5.1. An example DAG.

It follows that the factorization of p(y|x) into minimal disjoint marginal distributions
is unique.

Relation to PGMs

To illustrate the concept of ILF decomposition, consider the following example.

Ex. 5.1 Suppose p is faithful to the DAG from Figure 5.1. From the d-separation criterion we
have that {Y1} ⊥⊥{Y2, Y3} | X, so both {Y1} and {Y2, Y3} are label factors. However,
we have {Y2} ⊥
⊥{Y1, Y3} | X and {Y3} ⊥
⊥{Y1, Y2} | X, so {Y2} and {Y3} are not label
factors. Therefore {Y1} and {Y2, Y3} are the irreducible label factors, and p(y|x) =
p(y1|x) × p(y2, y3|x).

Note that the concept of irreducible label factors bears a close resemblance to
the maximal connected components in so-called "class-bridge decomposable" multi-
dimensional Bayesian network classifiers (MBCs) [BLL11], discussed in Section 4.3.3.
Still, MBCs are not able to provide a general characterization of every possible ILF
decomposition, as was illustrated in Figure 4.9.

In [GAE14] we follow a similar approach, where we learned a generic Bayesian
network structure from data in order to identify the ILFs. In the present work we
present an even more generic approach, and show that the ILFs can be characterized
efficiently without assuming the existence of any underlying probabilistic graphical
model.

Feature subset selection

The concept of Markov blanket offers a principled solution to the feature subset
selection (FSS) problem [KS96], which can be formulated in terms of conditional
independence. A feature subset of Y is by definition a subset M Ď X such that
Y ⊥⊥ X \ M | M, a.k.a. a Markov blanket1 of Y in X. Similarly, a minimal feature

1The formal definition of a Markov blanket and a Markov boundary can be found in Section 3.3.3,
Definition 3.1.
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subsetminimal
feature
subset

is a Markov boundary of Y in X. In the context of MLC, the problem of
identifying a minimal feature subset for a set of labels boils down to a Markov
boundary discovery problem. In the following, we will provide necessary and
sufficient conditions to characterize the irreducible label factors, {YF }, and their
respective Markov boundaries (or at least Markov blankets) in X, {MF },

p(y|x) =
∏

YF PFI

p(yF |mF ).

An important theoretical result states that the minimal feature subset is unique in
distributions satisfying the Intersection property [Pea89].

Thm. 5.2 Consider V, W two subsets of U. Then, V has a unique Markov boundary in W if p

supports the Intersection property.

Still, Theorem 5.2 says nothing about distributions that do not satisfy the Intersection
property, therefore it might very well be the case that the labels we are seeking to
predict possess multiple minimal feature subsets [SLA13; Peñ+07].

5.1.2 Irreducible label factors

The problem of identifying the ILFs is non-trivial, as we shall see, so we may
consider three assumptions about the underlying distribution p, namely the DAG-
faithfulness, the Intersection, and the Composition assumptions. We first show that
the ILF decomposition may be read off from a DAG in O(m) operations, under the
assumption that p is faithful to the graph. Then we derive two convenient results
to characterize the ILFs under the Intersection and Composition assumptions with
O(m2) independence tests. Finally, we show that a on-trivial characterization in
O(m2) exists also for general distributions, which does not necessarily translate
into a practical procedure. In order to illustrate each of these characterizations, we
introduce four DAGs in Figure 5.2 that will be used as example CI models all along
our analysis.

All our results to characterize the ILFs will involve pairwise conditional independence
relations between the labels in the form Yi ⊥⊥ Yj | Z. Such independence relations
may be directly read off from an independence model such as a DAG, or estimated
from the data set D with a statistical CI test. As discussed in Section 3.3, the
required sample size depends implicitly upon the degree of freedom of the test,
which increases exponentially with the number of variables considered. Therefore, it
is of practical interest to keep the conditioning set Z as small as possible in order for
our theoretical results to translate into feasible solutions.
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X1 X2 X3

Y1 Y2 Y3

p(y|x) = p(y1|x) × p(y2, y3|x)

(a)

X1 X2 X3

Y1 Y2 Y3

p(y|x) = p(y1, y2, y3|x)

(b)

X1 X2 X3

Y1 Y2 Y3

p(y|x) = p(y1, y2, y3|x)

(c)

X1 X2 X3

Y1 Y2 Y3

p(y|x) = p(y1, y3|x) × p(y2|x)

(d)

Fig. 5.2. Four DAG examples along with the ILF decomposition of p(y|x), given that p is faithful to G.

Under the DAG-Faithfulness assumption

Let us first provide a characterization of the ILFs with O(2m) pairwise independence
relations, which is intractable in general but will prove useful under the DAG-
faithfulness assumption.

Thm. 5.3 Let G be an undirected graph whose nodes correspond to the random variables in Y
and in which two nodes Yi and Yj are adjacent iff there exists Z Ď Y \ {Yi, Yj} such
that {Yi} ⊥
⊥{Yj} | (X Y Z). Then, each connected component in G is an ILF.

Theorem 5.3 offers an elegant graphical approach to characterize the ILFs by mere
inspection of the connected components in a graph G, which can be done efficiently
in O(m) using a breadth-first search algorithm. For illustration purposes, let us show
how such a graph is constructed from the examples in Figure 5.2.

Ex. 5.2 Consider the four DAGs in Figure 5.2. In DAG (a), from the d-separation criterion we
have that {Y1} ⊥⊥{Y2} | X and {Y1} ⊥⊥{Y2} | X Y {Y3}, so there is no edge between
Y1 and Y2 in G. Likewise, Y1 and Y3 are d-separated for every Z P {∅, {Y2}}, so
these two are not adjacent either. Only the edge Y2 − Y3 is present, because we have
{Y2} ⊥
⊥{Y3} | X. By proceeding in the same way, in DAG (b) we have {Y1} ⊥
⊥{Y2} | X,
{Y1} ⊥
⊥{Y3} | X and {Y2} ⊥
⊥{Y3} | X, so every pair of labels is adjacent. In DAG (c),
we have {Y1} ⊥
⊥{Y2} | X, {Y1} ⊥
⊥{Y3} | X Y {Y2} and {Y2} ⊥
⊥{Y3} | X so the graph
is also complete. In DAG (d) we have {Y1} ⊥⊥{Y3} | X due to the collider node X2, so
there is an edge between Y1 and Y3. There is no other edge in G because Y1 and Y2 are
d-separated for every Z P {∅, {Y3}}, as well as Y2 and Y3 for every Z P {∅, {Y2}}. The
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Y1

Y2

Y3

(a)

Y1

Y2

Y3

(b)

Y1

Y2

Y3

(c)

Y1

Y2

Y3

(d)

Fig. 5.3. Theorem 5.3 applied to our example DAGs.

graphs resulting from this procedure are displayed in Figure 5.3. We can now read off
the ILFs directly from the connected components in these graphs.

Despite the simplicity of this graphical characterization, deciding upon whether
∃Z Ď Y \ {Yi, Yj} such that {Yi} ⊥
⊥{Yj} | (X Y Z) is a challenging combinatorial
problem as the number of possible combinations for Z grows exponentially with the
number of labels, resulting in O(2m) conditional independence tests. However, when
p is faithful to a DAG, the ILFs can be directly read off from the DAG in O(m),

Thm. 5.4 Suppose p is faithful to a DAG G. Then, two labels Yi and Yj belong to the same ILF iff
there exists a path in G between them such that all intermediate nodes are either (i) a
label, or (ii) a collider.

Theorem 5.4 directly follows from Theorem 5.3, and identifies all ILFs with a single
breadth-first search through the DAG. Note that a similar result can be given for UGs
(Markov networks), with the mere condition that all intermediate nodes must be
labels. Still, applying such a procedure requires the DAG-faithfulness assumption
about p, and implies to recover a DAG first, which is known to be a hard problem
[CHM04].

Under the Intersection assumption

When p supports the Intersection property, the ILFs can identified with only O(m2)
statistical tests of independence in the form {Yi} ⊥
⊥{Yj} | X Y Z, with Z ranging
from ∅ to Y \ {Yi, Yj},

Thm. 5.5 Consider < a strict total order of Y. Let G be an undirected graph whose nodes
correspond to the random variables in Y and in which two nodes Yi and Yj (Yi < Yj)
are adjacent iff {Yi} ⊥
⊥{Yj} | X Y {Y |Y > Yi} \ {Yj}. Then, each connected component
in G is an ILF if p supports the Intersection property.

The quadratic complexity of Theorem 5.5 is very convenient, but the problem of
performing a statistical test with a large conditioning set remains. A practical
solution is given in Theorem 5.6, where the neighbourhood of each label Yi in G
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Y1

Y2
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(a)

Y1

Y2

Y3

(b)

Y1

Y2

Y3

(c)

Y1

Y2

Y3

(d)

Fig. 5.4. Theorem 5.5 applied to our example DAGs (Intersection assumption). Dashes indicate edges
that may be present or absent depending on the label ordering used.

boils down to a mere inspection of Mi, a Markov boundary of Yi in X Y {Y |Y > Yi}.
Thus, this new procedure does not explicitly rely on the result of a statistical test,
but on our ability to infer Markov boundaries, for which there exists plenty of
practical exact and approximate algorithmic solutions. Also, Theorem 5.6 exhibits
the appealing property of identifying correct label factors in every situation (although
not necessarily minimal), even when p does not obey the Intersection property.

Thm. 5.6 Consider < a strict total order of Y, and let Mi denote an arbitrary Markov boundary
of Yi in X Y {Y |Y > Yi}. Let G be an undirected graph whose nodes correspond to the
random variables in Y and in which two nodes Yi and Yj (Yi < Yj) are adjacent iff Yj

belongs to Mi. Then, each connected component in G is a LF, and an ILF if p supports
the Intersection property.

Note that under the Intersection assumption very similar procedures exists, with
independence tests in the form {Yi} ⊥
⊥{Yj} | X Y Y \ {Yi, Yj} in Theorem 5.5 and
Markov boundaries in X Y Y \ {Yi} in Theorem 5.6. Despite being conceptually
simpler (no label ordering involved), such procedures have no theoretical advantage
over those presented above, with larger conditioning sets compared to Theorem 5.5
and without the desirable correctness property of Theorem 5.6 when p does not
support Intersection.

The Intersection assumption might be too restrictive in many practical scenarios. In
fact, many real-life distributions (e.g., engineering systems such as digital circuits
and engines that contain deterministic components) violate the Intersection property.
As noted in [SLA13], high-throughput molecular data, known as the “multiplicity”
of molecular signatures (i.e., different gene/biomarker sets perform equally well
in terms of predictive accuracy of phenotypes) also suggests existence of multiple
Markov boundaries. It is usually unknown to what degree the Intersection assump-
tion holds in distributions encountered in practice. The following examples illustrate
two cases where the Intersection property does not hold, and the characterizations
provided in Theorems 5.5 and 5.6 do not necessarily yield an ILF decomposition.

Ex. 5.3 Consider Y = {Y1, Y2, Y3} three random variables such that Y1 = Y2 = Y3, and X = ∅.
Clearly the Intersection property does not hold, and every pair of labels is conditionally
independent given the third one. If we build the graph in Theorem 5.5 with the natural
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Fig. 5.5. Theorem 5.7 applied to our example DAGs (Composition assumption).

ordering (Y1, Y2, Y3) we end up with two label factors {Y1} and {Y2, Y3}, which is
clearly wrong.

Ex. 5.4 Consider Y = {Y1, Y2} and X = {X1}, with Y1, Y2, X1 three random variables such
that Y1 = Y2 = X1. Clearly the Intersection property does not hold. If we apply
Theorem 5.6 with the ordering {Y1, Y2}, then we have M1 P {{X}, {Y2}} and M2 =
{X}, and the procedure either ends up with the irreducible label factors {Y1} and {Y2},
or the label factor {Y1, Y2} depending on which Markov boundary is chosen for Y1.

Under the Composition assumption

When p supports the Intersection property, the ILFs can identified with only O(m2)
statistical tests of independence in the form {Yi} ⊥
⊥{Yj} | X,

Thm. 5.7 Let G be an undirected graph whose nodes correspond to the random variables in Y and
in which two nodes Yi and Yj are adjacent iff {Yi} ⊥
⊥{Yj} | X. Then, each connected
component in G is an ILF if p supports the Composition property.

From Theorem 5.7 we obtain a quadratic procedure which reduces the conditioning
set of the statistical test to only the feature set X compared to X Y Z in Theorem 5.5.
Still, performing that statistical test remains problematic for high dimensional
input spaces. A practical solution is given in Theorem 5.8, where the conditioning
set is further reduced to Mi a Markov boundary of Yi in X. Again, the search
for ILFs now relies on our ability to infer Markov boundaries, for which there
exists a wealth of practical algorithmic solutions. Therefore, Theorem 5.8 offers
a convenient way to recover the ILFs when the Composition assumption holds. It
should be emphasized that, under the Composition assumption, if {Yi} ⊥⊥{Yj} | Mi

(respectively {Yi} ⊥
⊥{Yj} | Mi) holds for a particular Markov boundary, then it holds
for every Markov blanket of Yi in X, and for every Markov blanket of Yj in X (see
the proof).

Thm. 5.8 For each label Yi, let Mi be an arbitrary Markov boundary of Yi in X. Let G be an
undirected graph whose nodes correspond to the random variables in Y and in which
two nodes Yi and Yj are adjacent iff {Yi} ⊥
⊥{Yj} | Mi. Then, each connected component
in G is an ILF if p supports the Composition property.
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It is usually unknown to what degree the Composition assumption holds in distribu-
tions encountered in practice. Some special distributions are known to satisfy the
Composition property, for example the multivariate Gaussian distribution [Stu05].
The following example provides a case where the Composition property does not
hold.

Ex. 5.5 Consider Y = {Y1, Y2, Y3} and X = ∅, with Y1, Y2, Y3 three binary variables such that
Y1 = Y2 ⊕ Y3 (⊕ denotes the exclusive OR operator). The Markov boundary in X of
each factor is necessarily Mi = ∅. If we build the graph from Theorem 5.8, we may
deduce that {Y1} is a label factor because {Y1} ⊥⊥{Y2} | ∅ and {Y1} ⊥⊥{Y3} | ∅. Clearly
this is wrong because {Y1} ⊥
⊥{Y2, Y3} | X.

For general distributions

We show next that, for any probability distribution, the ILFs can also be identified
with O(m2) statistical tests of independence. Compared to the previous charac-
terizations, the tests must now be made in sequential order and are in the form
{Yi} ⊥
⊥{Yj} | X Y Z, with Z a subset of Y \ {Yi, Yj}.

Thm. 5.9 Consider < a strict total order of Y. Let G be an undirected graph whose nodes
correspond to the labels, obtained from the following procedure:

1: G ← (Y, ∅) (empty graph)
2: for all Yi P Y do
3: Yi

ind ← ∅
4: for all Yj P (Y |Y > Yi) (processed in < order) do
5: if Yi ⊥⊥ Yj | X Y {Y |Y < Yi} Y Yi

ind then
6: Yi

ind ← Yi
ind Y {Yj}

7: else
8: Insert a new edge (i, j) in G

Then, each connected component in G is an ILF.

Note that the graph obtained from the explicit procedure in Theorem 5.9 may vary
when different label orderings are considered. Still, what matters is that the resulting
graph always exhibits the same set of connected components, and thereby the same
ILF decomposition. For the sake of illustration, let us apply Theorem 5.9 to our DAG
examples, and confirm that we obtain the same ILFs as previously.

Ex. 5.6 Consider the three DAGs in Figure 5.2, and let us identify the ILFs with Theorem 5.9.
Take the natural ordering {Y1, Y2, Y3} and consider the DAG (a), we have {Y1} ⊥⊥{Y2} |
X so Y1 and Y2 are not adjacent in G. Then, Y2 is added to the conditioning set, and
we have {Y1} ⊥⊥{Y3} | X Y {Y2} so Y1 and Y3 are not adjacent either. We proceed the

5.1 Characterizations 149



Y1

Y2

Y3

(a)

Y1

Y2

Y3

(b)

Y1

Y2

Y3

(c)

Y1

Y2

Y3

(d)

Fig. 5.6. Theorem 5.9 applied to our example DAGs (no assumption). Dashes indicate edges that may
be present or absent depending on the label ordering used.

same way with the second label to obtain Y2 ⊥
⊥{Y3} | X Y {Y1}, which indicates the
presence of an edge between Y2 and Y3. In the DAG (b), we have {Y1} ⊥
⊥{Y2} | X,
then {Y1} ⊥
⊥{Y3} | X and {Y2} ⊥⊥{Y3} | X Y {Y1} so the graph G is complete. Had we
taken another ordering, we would have ended up with a different graph. For example,
with the ordering {Y2, Y1, Y3}, the edge Y1 − Y3 is absent in G. In the DAG (c), we
have {Y1} ⊥
⊥{Y2} | X, then {Y1} ⊥⊥{Y3} | X and {Y2} ⊥
⊥{Y3} | X Y {Y1} so only the
edge Y1 − Y3 is missing. With the ordering {Y2, Y1, Y3}, the edge Y1 − Y3 is present.
Finally, in the DAG (d), we have {Y1} ⊥⊥{Y2} | X, then {Y1} ⊥
⊥{Y3} | X Y {Y2} and
{Y2} ⊥⊥{Y3} | X Y {Y1} so only the edge Y1 − Y3 is present. We notice that, while
the structure of G may differ according to the chosen label ordering, the connected
components remain unchanged as expected. The resulting graphs are displayed in
Figure 5.6.

Here again, the number of conditional independence tests required in Theorem 5.9 is
quadratic in the number of labels. Compared to the previous characterizations under
the Intersection and the Composition properties, this new result has the desirable
advantage of requiring no assumption about the underlying distribution p. However,
it suffers from two limitations: i) the conditioning set at line 5 ranges from X in the
first iteration to X Y Y \ {Yi, Yj} in the last iteration, which is problematic in high-
dimensional data sets; and ii) the whole procedure is prone to error propagation,
since each iteration depends on the result of the previous tests to constitute the
Yi

ind set. These problems remain serious impediments to the practical application of
this characterization. Also, the procedure to build the graph can not be fully run in
parallel, contrary to the ones in Theorems 5.5 and 5.7.

At this point is is worth pausing to summarize the results obtained so far for char-
acterizing the ILFs. We established that finding the ILFs boils down to searching
for connected components in an undirected graph, that can be constructed edge by
edge with a sequence of statistical independence tests. It appears that by consider-
ing several (reasonable) assumptions about the underlying probability distribution
p, practical procedures may be derived which imply learning a Bayesian network
structure (under the DAG-faithfulness assumption), or learning a Markov boundary
for every label (under the Intersection and Composition assumptions).
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5.1.3 Minimal feature subsets

The second fundamental problem that we wish to address involves finding optimal
feature subsets in the multi-label context, with respect to an Information Theory
criterion [KS96]. The feature subset selection problem in MLC has received some
attention in the last years [LK15; GEA14; LK13; Spo+13]. However, to our knowl-
edge, the empirical work developed in these studies has not yet been underpinned by
theoretical results. In this section we establish useful connections between marginal
and joint Markov blankets (or Markov boundaries when applicable), under several
assumptions about the underlying probability distribution.

Under the DAG-Faithfulness assumption

When p is faithful to a DAG G, the joint Markov boundary of a label set can be
depicted graphically in terms of the parent, child and spouse nodes of the labels,

Thm. 5.10 Let YS = {Y1, Y2, . . . , Yn} be any label subset. Then, when p is faithful to a DAG G, the
Markov boundary of YS in U is given by M = ⋃n

i=1(PCYi Y SPYi) \ YS .

Note that when M contains no features, then it is also a Markov boundary of YS

in X. Therefore, when p is faithful to a DAG, the joint Markov boundary of Y in X
consists in the set of all features which appear as a parent, child or spouse node of a
label in Y. Also, due to the characterization of ILFs in Theorem 5.4, it can be shown
that the set of parent, child and spouse nodes of a label in an ILF does not contain
any label outside those in the same ILF. Therefore, when p is faithful to a DAG, the
joint Markov boundary of an ILF YF in X consists in the set of all features which
appear as a parent, child or spouse node of a label in YF .

Under the Intersection assumption

When p supports the Intersection property, the joint Markov boundary of a label set
can be recovered as follows,

Thm. 5.11 Let YS be any label subset, {Y1, . . . , Yn} a partition of YS , and Mi a Markov
boundary of Yi in U \ ⋃i

j=1 Yj . Then, M = ⋃n
i=1 Mi \ YS is a Markov blanket for

YS in U, and a Markov boundary when p supports the Intersection property.

Again, if M contains no features, then it is also a Markov boundary (resp. Markov
blanket) in X. Therefore, when p supports the Intersection property, the joint
Markov boundary of Y in X consists in all the features which appear in the marginal
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Markov boundary of each single label Y1, Y2, . . . , Ym respectively in U, U\{Y1}, . . . ,
U \ {Y1, . . . , Ym−1}. Also, due to the characterization of ILFs in Theorem 5.6, it can
be shown that the same procedure applied to an ILF YF necessarily results in the
joint Markov boundary of YF in X when p supports the Intersection property. Still,
Theorem 5.11 requires the Intersection assumption, as illustrated in the following
example.

Ex. 5.7 Consider Y = {Y1, Y2} and X = {X1, X2}, with Y1, Y2, X1, X2 four random variables
such that Y1 = Y2 = X1 = X2. Clearly p does not support the Intersection property.
Suppose we apply Theorem 5.11 with Y1 = {Y1} and Y2 = {Y2}. Then multiple
marginal Markov boundaries exist, and M1 can be one of {{X1}, {X2}, {Y2}} and M2

one of {{X1}, {X2}}. Depending on which marginal Markov boundaries are use, M
can be one of {{X1}, {X2}, {X1, X2}}. Clearly {X1, X2} is not a Markov boundary of
Y.

Under the Composition assumption

When p supports the Composition property, the joint Markov blanket of a label set
can be recovered as follows,

Thm. 5.12 Let YS be any label subset, {Y1, . . . , Yn} a partition of YS , and Mi a Markov
boundary of Yi in X. Then, M = ⋃n

i=1 Mi is a Markov blanket for YS in X when p

supports the Composition property, and a Markov boundary when p also supports the
Intersection property.

As a result, it appears that multi-label feature selection based on single label feature
selection requires i) the Composition property to ensure a correct feature subset, and
ii) the Intersection property to ensure a minimal feature subset. This is illustrated in
the following example.

Ex. 5.8 Consider Y = {Y1, Y2} and X = {X1}, with Y1 = X1 ⊕ Y2 (⊕ denotes the exclusive
OR operator). Clearly the Composition property does not hold, yet the Intersection
does. The marginal Markov boundaries are M1 = ∅ and M2 = ∅, so Theorem 5.12
yields M = ∅ and fails to identify the dependency between X1 and {Y1, Y2}. Consider
Theorem 5.11 instead. We have M1 = {X1, Y2} and M2 = ∅, which yields the correct
joint Markov boundary M = {X1}.

For general distributions

Finally, for any probability distribution p, the joint Markov blanket of a label set can
be recovered according to Theorem 5.11.
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5.1.4 Algorithms

In view of the theoretical analysis conducted in the last section, we shall propose
three generic procedures for recovering a partition of (irreducible) label factors
and their respective (minimal) feature subsets. These strategies are termed ILF-
DAG, ILF-Inter and ILF-Compo in reference to their respective assumptions about
the underlying probability distribution, that is, DAG-faithfulness, Intersection and
Composition.

Generic procedures

• ILF-DAG (Algorithm 11): When p is faithful to a DAG. The procedure goes as
follows: 1) learn the BN structure; 2) start from any label, say Yi, recover its
parents, children and spouses in the DAG, and keep doing it for every label
recovered this way. At convergence, the set of all the recovered labels forms
an ILF according to Theorem 5.4, and the set of all the recovered features
forms its minimal feature subset according to Theorem 5.10. 3) repeat the last
step with any label that has not been recovered yet, until all ILFs have been
recovered. This approach has already been successfully used in Gasse et al.
[GAE14].

• ILF-Inter (Algorithm 12): When p supports the Intersection property. The
procedure goes as follows: 1) initialize the set of all previously processed
labels, Ydone = ∅; 2) start from any label, say Yi, add it to Ydone, recover its
Markov boundary in U\Ydone, and keep doing it for every label recovered this
way. At convergence, the set of all the recovered labels forms an ILF according
to Theorem 5.6, and the set of all the recovered features forms its minimal
feature subset according to Theorem 5.11. 3) repeat the last step with any
label that has not been recovered yet, until all ILFs have been recovered. Note
that even if the Intersection property is violated, the recovered label sets are
still label factors, and the recovered feature sets are valid (not necessarily
minimal) feature subsets.

• ILF-Compo (Algorithm 13): When p supports the Composition property. The
procedure goes as follows: 1) for every label Yi recover Mi its Markov
boundary in X; 2) start from any label, say Yi, recover any label such that
Yi ⊥
⊥ Yj | Mi or Yi ⊥
⊥ Yj | Mj with a statistical independence test, and keep
doing it for every label recovered this way. At convergence, the set of all the
recovered labels forms an ILF according to Theorem 5.8, and the union of their
Markov boundaries forms a (not necessarily minimal) feature subset according
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Algorithm 11 ILF-DAG

Require: D a data set, X the set of features, Y the set of labels, BN alg a Bayesian
network structure learning algorithm.

Ensure: PY a partition of Y and SX a family of subsets of X.
1: Initialize PY ← ∅, SX ← ∅, Ydone ← ∅
2: Compute G the Bayesian network structure which covers X Y Y using BN alg

3: while Y \ Ydone 
= ∅ do
4: Select arbitrarily one label Yi in Y \ Ydone

5: Initialize YF ← {Yi}, MF ← ∅
6: while YF \ Ydone 
= ∅ do
7: Select arbitrarily one label Yj from YF \ Ydone

8: Recover Mj the set of parent, child and spouse nodes of Yj in G
9: Add Mj X X to MF

10: Add Mj X Y to YF

11: Add Yj to Ydone

12: Add YF to PY
13: Add MF to SX

Algorithm 12 ILF-Inter

Require: D a data set, X the set of features, Y the set of labels, MBalg a Markov
boundary learning algorithm.

Ensure: PY a partition of Y and SX a family of subsets of X.
1: while Y \ Ydone 
= ∅ do
2: Select arbitrarily one label Yi from Y \ Ydone

3: Initialize YF ← {Yi}, MF ← ∅
4: while YF \ Ydone 
= ∅ do
5: Select arbitrarily one label Yj from YF \ Ydone

6: Compute Mj a Markov boundary of Yj in U \ Ydone using MBalg

7: Add Mj X X to MF

8: Add Mj X Y to YF

9: Add Yj to Ydone

10: Add YF to PY
11: Add MF to SX

to Theorem 5.12. 3) repeat the last step with any label that has not been
recovered yet, until all ILFs have been recovered. Note that if p also supports
the Intersection property, then the recovered feature subsets are minimal. This
approach has recently been discussed in Gasse et al. [GAE15].

While it is important to decompose p(y|x) as much as possible, it is even more
important not to decompose it when such a factorization does not exist. Table 5.1
gives an overview of the theoretical capabilities of each of our procedures, according
to the validity of our assumptions about the underlying distribution p. At first
sight, ILF-Inter is conceptually the most promising procedure as it does guarantee to
output correct label factors and feature subsets in every situation (but not necessarily
irreducible ones). In contrast, ILF-Compo is not guaranteed to output correct label
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Algorithm 13 ILF-Compo

Require: D a data set, X the set of features, Y the set of labels, MBalg a Markov
boundary learning algorithm, (· ⊥⊥ · | ·) a statistical test of conditional indepen-
dence.

Ensure: PY a partition of Y and SX a family of subsets of X.
1: Initialize PY ← ∅, SX ← ∅, Ydone ← ∅
2: for all Yi P Y do
3: Compute Mi a Markov boundary of Yi in X using MBalg

4: while Y \ Ydone 
= ∅ do
5: Select arbitrarily one label Yi from Y \ Ydone

6: Initialize YF ← {Yi}, MF ← Mi

7: while YF \ Ydone 
= ∅ do
8: Select arbitrarily one label Yj from YF \ Ydone

9: for all Yk P Y \ (Ydone Y YF ) do
10: if {Yj} ⊥
⊥ D{Yk} | Mj or {Yj} ⊥
⊥ D{Yk} | Mk then
11: Add Yk to YF

12: Add Mk to MF

13: Add Yj to Ydone

14: Add YF to PY
15: Add MF to SX

Tab. 5.1. Theoretical capabilities of each method when p satisfies the DAG faithfulness, Intersection
and Composition assumptions. The label sets returned by each method may be guaranteed
to be irreducible label factors (ILF), or correct but not necessarily irreducible label factors
(LF). Likewise, the feature subset returned for each label factor may be either a Markov
boundary in X (MB), or a Markov blanket in X (M).

DAG-faith. Intersection Composition ILF-DAG ILF-Inter ILF-Compo

X X X ILF MB ILF MB ILF MB
- X X - - ILF MB ILF MB
- X - - - ILF MB - -
- - X - - LF M ILF M
- - - - - LF M - -

factors and feature subsets when the Composition property is violated. Still, in
the particular setting where only the Composition property holds, ILF-Compo may
be preferable to ILF-Inter to identify the true ILF decomposition. An empirical
comparison of these three procedures will be performed in the next section, on a set
of carefully designed synthetic experiments.

The Intersection and Composition axioms are not a universally valid properties
of probabilistic independence models (Section 1.1.3), and neither does one imply
the other. They appear to be essential properties though, as they often loosen
the computational burden involved in statistical queries [Peñ+06; KT05]. It is
considered reasonable to assume Intersection whenever there is uncertainty about
the data, due for instance to measurement noise [Pea89] (i.e., all assignments of
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the domain variables have a non zero probability, p > 0). Typical problems violating
the positivity condition involve noise-free data such as logic propositions. While
most data distributions encountered in practical regression or classification tasks are
strictly positive, this is not the case in MLC problems as pairwise positive entailment
relationships (e.g., river ��� water and car ��� vehicle) and/or mutually exclusive
labels (e.g., four seasons: autumn, winter, spring and summer) often exist among
the labels [PTT15]. On the other hand, the Composition axiom is violated when, for
instance, the variables exhibit an exclusive-or relationship (Examples 5.5 and 5.8).

Implementation

The three generic procedures ILF-DAG, ILF-Inter and ILF-Compo are mathematically
sound when the assumptions about p are met. They however rely on specific algorith-
mic procedures as subroutines for learning a BN structure (ILF-DAG), recovering a
Markov boundary (ILF-Inter, ILF-Compo) or performing a conditional independence
test (ILF-Compo). While there exists a wealth of such procedures in the literature,
in most cases these offer only asymptotic guarantees, and are fallible with limited
data sets. In addition, in typical MLC problems the distribution of the labels is
known to be highly unbalanced, which also contributes to degrading the accuracy of
statistical tests. With those considerations in mind, we propose a straightforward
implementation of our three procedures in order to corroborate our theoretical
findings empirically.

We chose to implement the three procedures upon the bnlearn R package from
Scutari [Scu10] that offers plenty of practical procedures for Bayesian network
structure learning, Markov boundary discovery and statistical independence testing.
For a fair comparison of our three generic strategies, within ILF-DAG we employ the
Bayesian network structure learning algorithm proposed by Margaritis and Thrun
[MT99], which also relies on a Markov boundary discovery algorithm as a subrou-
tine. Then, in our three procedures we employ the KIAMB algorithm, a powerful
constraint-based method proposed by Peña et al. [Peñ+07] that is able to return
any Markov boundary with non-zero probability (when multiple Markov boundaries
exist). Finally, we employ a discrete semi-parametric permutation-based mutual in-
formation independence test, as advocated by Tsamardinos and Borboudakis [TB10].
We run the test with 100 permutations, and binarized continuous variables. Com-
pared to classical asymptotic tests, permutation tests are better calibrated, that is,
the actual Type I error is closer to the significance level α set by the user. Note
that the main caveat in our implementation choice is that KIAMB relies on the
Composition property for correctness, so our implementation of ILF-Inter, although
"optimal" in a certain sense under Intersection, will suffers from certain limitations.
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In fact, the correctness of all constraint-based Markov boundary learning algorithms
that appeared in the recent literature (i.e., IAMB [TAS03a], Grow-Shrink [MT99],
MMMB [TAS03b], MBOR [MA10a], PCMB [Peñ+07]) also rely on the Composi-
tion property, as well as any forward approach to feature subset selection [GE03].
Therefore, it appears rather difficult to implement ILF-Inter efficiently without also
assuming the Composition property.

Regarding running-time efficiency, the actual complexity of our proposed methods
is closely tied to the complexity of the approximation algorithms which are used
as subroutines. Markov boundary and BN structure learning are both NP-hard
problems with respect to the number of variables considered, while performing a
parametric statistical test of independence requires a complete pass through the
data set and therefore scales linearly with the number of samples. In the end, the
time complexity of ILF-DAG is O(m + CBN (m + d)), where CBN (m + d) is the time
complexity of algorithm BN alg with m+d variables. The time complexity of ILF-Inter
is O(mCMB(m + d)), where CMB(m + d) is the time complexity of algorithm MBalg

with m + d variables, and that of ILF-Compo is O(m2s + mCMB(d)).

Experimental validation

Let us now corroborate our theoretical findings by means of empirical evidence. As
it is unknown to what degree the DAG-Faithfulness, Intersection and Composition
properties hold in distributions encountered in practice, we set up a simple toy
problem to investigate the detrimental side effects that may arise in the learning
process of ILF-DAG, ILF-Inter and ILF-Compo when one or several assumptions are
not valid. Note that we do not investigate empirically the feature subset selection
problem, even though our proposed procedures are theoretically able to perform
feature subset selection.

Consider the directed acyclic graph G depicted in Figure 5.7, which consists of six
binary variables X1, X2, . . . , X6 and six labels Y1, Y2, . . . , Y6. The initial probability
distribution we consider is faithful to G, with the conditional probability tables
presented in Table 5.8a. Now, we may easily violate the DAG-faithfulness assumption
(and yet retain the Intersection and Composition properties), by considering X4

as a hidden variable. Indeed, there exists no DAG that encodes faithfully all the
remaining conditional independence relations. We shall also violate the Composition
assumption by setting up a non-deterministic XOR relationship between variables
Y5, X6 and Y6. To do so, we replace the conditional probability table of X6 with
that of Table 5.8b. It can be observed now that Y5 ⊥⊥ X6, Y5 ⊥⊥ Y6, and Y5 ⊥
⊥{X6, Y6}
which is inconsistent with the Composition property. Finally, we shall also violate
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X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Fig. 5.7. DAG of toy problem 1.

Tab. 5.2. Pairwise F2 measure (mean ± std in percent) of the decomposition output by each method
versus the optimal decomposition, over 1000 runs with 5000 samples (higher is better).

Scenario ILF-DAG ILF-Inter ILF-Compo

DAG-Faithfulness 100.0 ± 0.5 99.9 ± 1.4 99.9 ± 1.5
Inters. + Compos. 77.4 ± 22.2 90.5 ± 18.2 93.1 ± 16.1
Intersection 28.2 ± 27.8 45.2 ± 21.7 47.8 ± 19.3
Composition 77.3 ± 22.2 88.3 ± 18.0 93.1 ± 16.1
Worst case 27.6 ± 27.8 43.6 ± 22.0 46.8 ± 20.3

the Intersection assumption by establishing a deterministic relationship between
nodes X1, Y1 and X2. To do so, we shall replace the conditional probability table of
Y1 and X2 with that in Table 5.8c. It can be observed now that Y1 ⊥⊥ X2 | {X1, Y2},
Y1 ⊥⊥ X1 | {X2, Y2} and Y1 ⊥
⊥{X1, X2} | Y2 which is inconsistent with the Intersection
property.

To summarize, we alter the initial model in order to obtain five different distributions
satisfying the following scenarios: i) p is DAG-faithful; ii) p is not DAG-faithful but
still satisfies the Intersection and the Composition properties; iii) p only satisfies
the Intersection property; iv) p only satisfies the Composition property; and v) p

neither satisfies Intersection nor Composition (termed "Worst case" in the tables). To
increase the difficulty of the Markov boundary discovery task, 14 irrelevant random
binary variables X7, . . . , X20 are added to each data set. We sample 1000 training
sets of 5000 observations each from each scenario, and compare the decomposition
output by ILF-DAG, ILF-Inter and ILF-Compo with the true ILF decomposition of
each scenario, that is, FI = {{Y1}, {Y2}, {Y3}, {Y4}, {Y5, Y6}} in the DAG-faithful
scenario, and FI = {{Y1}, {Y2}, {Y3, Y4}, {Y5, Y6}} in all the remaining scenarios. In
this experiment we employ CI tests with significance level α = 0.01.

To evaluate the ILF decomposition quality, we report in Table 5.2 the pairwise F2

measure of each method compared to the ground truth decomposition. The idea
is to view the ILF decomposition as a series of m(m − 1)/2 decisions, one for each
pair of labels, as to whether the pair belongs to the same ILF or not. Ideally, one
would like to assign two labels to the same ILF if and only if they are in the true
ILF. However, an excessive factorization should be penalized more than a missed
factorization, therefore we report the pairwise F2 measure to penalize false negatives
more strongly than false positives.

158 Chapter 5 Irreducible label factors



1 0

p(X1) 0.5 0.5

p(X2 | X1 = 0) 0.2 0.8
p(X2 | X1 = 1) 0.8 0.2

p(X3) 0.5 0.5

p(X4) 0.5 0.5

p(X5 | X4 = 0, Y4 = 0) 0.1 0.9
p(X5 | X4 = 0, Y4 = 1) 0.6 0.4
p(X5 | X4 = 1, Y4 = 0) 0.6 0.4
p(X5 | X4 = 1, Y4 = 1) 0.8 0.2

p(X6 | Y5 = 0, Y6 = 0) 0.1 0.9
p(X6 | Y5 = 0, Y6 = 1) 0.6 0.4
p(X6 | Y5 = 1, Y6 = 0) 0.6 0.4
p(X6 | Y5 = 1, Y6 = 1) 0.8 0.2

p(Y1 | X1 = 0) 0.8 0.2
p(Y1 | X1 = 1) 0.2 0.8

p(Y2|X2 = 0) 0.8 0.2
p(Y2|X2 = 1) 0.2 0.8

p(Y3 | X3 = 0, X4 = 0) 0.1 0.9
p(Y3 | X3 = 0, X4 = 1) 0.6 0.4
p(Y3 | X3 = 1, X4 = 0) 0.6 0.4
p(Y3 | X3 = 1, X4 = 1) 0.2 0.8

p(Y4) 0.5 0.5

p(Y5) 0.5 0.5

p(Y6) 0.5 0.5

(a) Faithful distribution.

1 0

p(X6 | Y5 = 0, Y6 = 0) 0.1 0.9
p(X6 | Y5 = 0, Y6 = 1) 0.9 0.1
p(X6 | Y5 = 1, Y6 = 0) 0.9 0.1
p(X6 | Y5 = 1, Y6 = 1) 0.1 0.9

(b) XOR relationship between Y5, X6 and Y6. The
Composition property is violated.

1 0

p(X2 | X1 = 0) 0.0 1.0
p(X2 | X1 = 1) 1.0 0.0

p(Y1 | X1 = 0) 0.0 1.0
p(Y1 | X1 = 1) 1.0 0.0

(c) Deterministic relationship between Y1,
X1 and X2. The Intersection property is

violated.

Fig. 5.8. Conditional probability tables in our toy problem.

5.1 Characterizations 159



As expected, the global performance globally decreases as we move from the eas-
iest scenario (DAG-Faithfulness) to the admittedly most difficult one (i.e., neither
Intersection nor Composition properties hold). Nonetheless, the detrimental side
effects in the learning process are more pronounced when the Composition property
is violated. Indeed, a drastic drop of performance in terms of F2 measure is observed
for the Intersection and the worst case scenarios. Second, while all methods perform
equivalently under the Faithfulness assumption, ILF-DAG fails spectacularly when the
Composition is not valid. Learning a DAG prior to extracting the ILFs is apparently
not the best strategy when the distribution is not faithful to such a DAG. In the worst
case, ILF-DAG is superseded by ILF-Inter and ILF-Compo in terms of F2 measure.
Third, ILF-Compo compares favorably to ILF-Inter and ILF-DAG in all cases. The
deceiving performance of ILF-Inter when the Composition is not valid is most likely
due to KIAMB being incorrect for this subclass of distributions.

Overall, this toy problem clearly highlights the limitations of each method when
some of the probabilistic assumptions on which they are based are not valid. Usually,
practitioners have no indication about the probabilistic properties underlying their
data at hand and whether the assumptions are testable. So, we single out ILF-Compo
for its robustness and overall performance on this toy problem.

5.2 Application to subset zero-one loss
minimization

This section presents a number of experimental studies to evaluate our ILF decompo-
sition approach for MLC with subset 0/1 loss minimization, using both synthetic and
benchmark data. Our aim is not to perform a thorough comparison against state-of-
the-art MLC algorithms but instead to corroborate our theoretical findings by means
of empirical evidence. We first investigate on a toy problem the extent to which
ILF-Compo (the best performing algorithm in our previous experiments) can help
to solve the MLC problem under subset 0/1 loss, for different label independence
structures. Finally, we assess the ability of ILF-Compo to reduce the empirical subset
0/1 loss on 8 real-world MLC benchmark data sets.

5.2.1 Factorized LP

The subset 0/1 loss, introduced in Section 4.1.2, is a commonly applied performance
metric in MLC studies. The point-wise risk-minimizing prediction is given by the
mode of the joint distribution of the labels, arg maxy p(y|x), a.k.a. the maximum
a-posteriori estimate (MAP), or most probable expectation (MPE). Then, a straight-
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forward approach is to cast the MLC problem as a single multinomial classification
problem, by considering each label combination as a distinct meta-class. This scheme,
introduced in Section 4.2.2, is called Label Powerset (LP) [TV07; TKV11], and is
guaranteed to perform MAP inference in any situation. However, the number of
meta-classes in LP is potentially exponential to the number of labels, which leads to
tractability and robustness issues.

Given that an ILF decomposition exists, the MLC problem under subset 0/1 loss
decomposes nicely into a series of simpler sub-problems that can be solved indepen-
dently, one for each label factor,

max
y

p(y|x) =
∏

YF PFI

max
yF

p(yF |x). (5.1)

In light of (5.1), applying the LP scheme on each ILF is guaranteed to results in MAP
inference. We refer to this approach as Factorized LPF-LP (F-LP). The theoretical advan-
tages are two-fold: i) stronger probability estimates, due to a reduced number of
free parameters in p(y|x); and ii) smaller prediction times, due to the decomposition
of the inference problem (5.1).

It should be emphasized that, when the ILFs are reduced to singletons, p(y|x) fac-
torizes as the product of m marginal distributions

∏m
i=1 p(yi|x), and the problem of

obtaining a MAP estimate of the labels boils down to training a separate binary clas-
sifier for each label. This simple scheme, introduced in Section 4.2.1, is called Binary
relevance (BR) [Lua+12], and is well suited in this situation. In any other situation,
applying the BR scheme is no longer guaranteed to result in MAP inference.

The F-LP procedure goes as follows: 1) run the ILF-Compo algorithm to obtain the ILF
decomposition; 2) apply the LP scheme on each ILF to solve the MLC problem under
subset 0/1 loss. Overall, F-LP balances between BR and LP when p(y|x) accepts
respectively a full decomposition or no decomposition at all. While theoretically
sound, this whole procedure may not necessarily translate into a gain in performance
(i.e., reduced subset 0/1 loss on the test set) if the MLC problem is not decomposable,
or if the true decomposition is not correctly identified by ILF-Compo.

5.2.2 Toy problem

The aim of this first experiment is to illustrate the impact of the ILF decomposition
to minimize the subset 0/1 loss. As F-LP includes BR and LP as special cases, we
examine whether the decomposition translates to improved performances with
respect to these two baseline algorithms. Consider the DAG depicted in Figure 5.9,
which consists in a (single) discrete variable X with 16 modalities, and 5 labels
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X

Y1 Y2 Y3 Y4 Y5

Fig. 5.9. BN structure of our toy problem. Dashed lines indicate possibly missing edges.

Y1, Y2, . . . , Y5. Due to the DAG structure, each label Yi can only be made directly
dependent of X and its neighbouring labels Yi−1 and Yi+1. By removing intentionally
certain short-dashed edges in the DAG, several groups of labels can be made made
conditionally independent given X, thereby imposing a particular ILF decomposition.
In order to evaluate the behaviour of F-LP on different scenarios, we consider five
distinct ILF decompositions:

• DAG 1: FI = {{Y1}, {Y2}, {Y3}, {Y4}, {Y5}};
• DAG 2: FI = {{Y1, Y2}, {Y3, Y4}, {Y5}};
• DAG 3: FI = {{Y1, Y2, Y3}, {Y4, Y5}};
• DAG 4: FI = {{Y1, Y2, Y3, Y4}, {Y5}};
• DAG 5: FI = {{Y1, Y2, Y3, Y4, Y5}}.

For each scenario, we generate random probability distributions by sampling uni-
formly the conditional probability table of each node in the DAG from a unit simplex,
as discussed in Smith and Tromble [ST04]. The process is repeated 1000 times for
each DAG, to obtain 5 × 1000 random probability distributions. From each distribu-
tion, we draw 7 training samples with respectively 50, 100, 200, 500, 1000, 2000
and 5000 instances and one testing sample with 5000 instances. F-LP, LP and BR
are then run on each training set using the same multi-class base learner, a Random
Forest classifier [LW02], and we evaluate performance of each method on the test
set. In this experiment we run ILF-Compo with significance level α = 0.01.

The MLC performance of F-LP, BR and LP in terms of subset 0/1 loss is reported in
Figure 5.10. As expected, LP (red curve) is asymptotically optimal with the sample
size of the training set. Nonetheless, it happens that BR (green curve) outperforms
LP on small sample sizes (< 500), as shown in Fig. 5.10b. The reason is that
LP needs more observations to safely estimate p(y | x) than BR to estimate each
p(yi | x). Second, the asymptotic difference between LP and BR is more pronounced
as we move from DAG 1 to DAG 5. In fact, when all the labels are conditionally
independent of each other (DAG 1), the ILFs are reduced to singletons and BR is
optimal in terms of subset 0/1 loss. In any other situation BR is no longer optimal,
and the higher the conditional dependence between the labels is, the more BR and
LP diverge asymptotically. Finally, F-LP (black curve) compares favorably to both
BR (green curve) and LP (red curve) in all scenarios. When all successive labels are
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(c) DAG 3
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(d) DAG 4
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(e) DAG 5

Fig. 5.10. Mean subset zero-one loss of each method on each DAG, with 7 different training sizes (50,
100, 200, 500, 1000, 2000, 5000) displayed on a logarithmic scale, averaged over 1000
repetitions with random distributions (lower is better).
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Tab. 5.3. Pairwise F2 measure (mean ± std in percent) of the decomposition output by ILF-Compo
versus the true ILF decomposition, over 1000 runs (higher is better).

Sample size DAG 1 DAG 2 DAG 3 DAG 4 DAG 5

50 99.3 8.3 2.6 ± 11.4 2.1 ± 7.5 1.6 ± 5.4 1.8 ± 4.6
100 95.3 21.2 28.9 ± 32.4 26.0 ± 21.1 19.6 ± 15.1 16.2 ± 11.6
200 92.3 26.7 76.6 ± 28.8 64.1 ± 18.9 47.8 ± 14.1 39.3 ± 10.5
500 89.7 30.4 98.1 ± 7.6 84.2 ± 10.2 64.9 ± 11.4 55.2 ± 9.2

1000 89.8 30.3 99.3 ± 2.7 91.2 ± 10.2 75.3 ± 12.2 65.0 ± 10.2
2000 90.5 29.3 99.1 ± 2.7 96.7 ± 7.4 84.8 ± 9.9 74.3 ± 8.7
5000 90.8 28.9 99.0 ± 2.9 99.3 ± 3.1 92.0 ± 7.5 82.3 ± 7.9

pairwise dependent then ILF-Compo boils down to LP (DAG 5), while at the opposite
extreme it boils down to BR (DAG 1). Between these two extreme cases (DAGs 2,
3, 4), the decomposition found by ILF-Compo seems always beneficial to F-LP as it
outperforms both BR and LP in terms of subset 0/1 loss. Overall, these results are in
nice agreement with our theoretical expectations.

Since we know the ground truth of the ILF decomposition for each scenario, here
again we can evaluate the quality of the decomposition returned by ILF-Compo in
terms F2 measure, reported in Table 5.3. It is worth noting that, in the extreme
case where almost all the labels are conditionally dependent (e.g., DAG 4 and 5),
ILF-Compo can fail spectacularly to identify the correct ILFs with small sample sizes
(< 200). This is clearly due to the lack of robustness of the statistical test employed
with a limited amount of samples. However, this has little impact in terms of subset
0/1 loss for small sample sizes since BR and LP perform poorly as well. Still, as the
sample size increases the quality of the ILF decomposition becomes significantly
better.

5.2.3 Real-world benchmark

We now report on an experiment performed on 8 real-world multi-label data sets.
These come from different domains including text, biology, music and vision, with a
number of labels ranging from 5 to 53. All data sets can be found on the Mulan2

repository, except for image which comes from Zhou3 [MR98]. Table 5.4 presents the
main characteristics of each data set D, where |D| indicates the number of examples,
dim(D) the number of features, L(D) the number of labels, F (D) the feature type
and DL(D) the number of distinct label combinations appearing in the data set. Of
course, we have no idea about the true ILF decomposition for each of these data sets,
therefore we also repeat the experiment on augmented data sets to ensure that the

2http://mulan.sourceforge.net/datasets.html
3http://lamda.nju.edu.cn/data_MIMLimage.ashx
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Tab. 5.4. Benchmark data sets characteristics

name domain |D| dim(D) F (D) L(D) DL(D)
emotions music 593 72 cont. 6 27
image images 2000 135 cont. 5 20
scene images 2407 294 cont. 6 15
yeast biology 2417 103 cont. 14 198
slashdot text 3782 1079 disc. 22 156
genbase biology 662 1186 disc. 27 32
medical text 978 1449 disc. 45 94
enron text 1702 1001 disc. 53 753

underlying conditional distribution p(y|x) factorizes into (at least) two ILFs. The
augmented data sets are created as follows: we create a copy of the original data
set, permute its rows, and merge it side-by-side with the original data set. So by
design, these augmented data sets have twice as many features and twice as many
labels as the original ones, for the same sample size. Using this method, we maintain
the probabilistic structure of the original and duplicated parts, while imposing their
mutual independence.

Comparative methods

In order to assess the effectiveness of the ILF decomposition scheme, in this experi-
ment we compare F-LP to three baseline approaches for subset 0/1 loss minimization,
namely LP, PCC and its relaxed variant MCC. For information purposes we also
measure the performance in terms of subset 0/1 loss of a variety of other approaches
commonly used in the MLC literature, namely BR, RAkEL, HOMER, CC and two
of its variants ECC and LEAD. As we will see, each of these approaches relies on
a particular decomposition of the MLC problem, which we believe is interesting
to compare to our ILF decomposition scheme. Note that we do not include in this
experiment other approaches to MLC such as CRF, S-SVM, MBC or CDN discussed in
Chapter 4, since these rely on specific inference procedures and thus are difficult to
compare to F-LP without using the same base learner. We now give a short overview
of the compared methods, which is not intended to convey a detailed understanding
of the algorithms but rather give a flavour of the various stages involved.

• RAkEL The RAdom k labELsets approach [TV07; TKV11], discussed in Sec-
tion 4.2.5, is an ensemble method that has been proposed in order to overcome
the computational burden of LP. It consists of several LP classifiers over ran-
domly drawn subsets of labels, and is parametrized by the size of the random
label subsets and the number of subsets to draw. The global prediction is ob-
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tained by combining the LP predictions of all the label subset with a label-wise
majority vote, that is, by counting for each label how many times it is predicted
positive. Despite its intuitive appeal and competitive performance, RAKEL is
still not well understood from a theoretical point of view. While for particular
settings it reduces to BR (m subsets of size 1) or LP (1 subset of size m), and it
is not clear which loss function it intends to minimize in general.

• HOMER The Hierarchy Of Multi-label classiERs approach [TKV08] is a hier-
archical method that has been proposed as an effective and computationally
efficient solution to MLC. Basically, HOMER constructs a tree that decomposes
the label set hierarchically into disjoint subsets, from the root node that con-
tains the whole label set to the leaf nodes that contain single labels. The
splitting criterion relies on a clustering algorithm that partitions the current
label set into k disjoint subset, so that similar labels are placed together and
dissimilar apart. The classification scheme then follows the tree structure,
with a baseline multi-label classifier that predicts for each node which of its
child nodes contains one or more positive labels. According to the authors,
the benefit of this method is a sub-linear prediction time with respect to the
number of labels, due to the sparseness of most MLC problems. Still, the
theoretical properties of the HOMER structure is not well understood, and it is
not clear which loss function it intends to minimize in the end.

• LEAD The multi-label Learning by Exploiting lAbel Dependency approach [ZZ10],
discussed in Section 4.2.3, learns a DAG structure from the error residuals of a
BR classifier, and then adopts a CC scheme that follows the DAG structure. To
some extent LEAD exploits conditional label dependencies to learn the DAG
structure, however it inherits the greedy inference scheme of CC and it is not
clear which loss function it minimizes.

• PCC The Probabilistic Classifier Chain approach [DCH10] was discussed in
detail in Section 4.3.1. Basically, PCC learns a chain of binary probabilistic
classifiers to model p(y|x), and performs exact MAP inference with an exhaus-
tive search in O(2m) for the most probable label combination. Clearly, PCC
is tailored for subset 0/1 minimization, but in practice is limited to problems
with small to moderate number of labels, typically not more than about 15.

• MCC The Monte-Carlo Classifier Chain approach [RML14] is basically a relaxed
version of PCC, which decides on the best chaining order at training time with
a random exploration scheme, and replaces the exhaustive search of PCC for
inference with a random search. The inference procedure in MCC loosens
the computational complexity of PCC, and is able to deal with larger-sized
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problems. Still, while MCC is clearly tailored for subset 0/1 loss, it can perform
only approximate MAP inference.

• CC The Classifier Chain approach [Rea+09], discussed in Section 4.2.3, is a
greedy version of PCC where exact MAP inference is replaced by a greedy
approximation according to the chain order, which reduces the inference
complexity to O(m). The appealing property of CC is that it can account for
label dependencies at the same cost as BR, and in practice it was shown to
perform well in many cases. However, the greedy approximation scheme can
lead to a high regret with respect to both Hamming loss and subset 0/1 loss
[DWH12], and is rather sensitive the ordering of the labels in the chain.

• ECC The Ensemble of Classifier Chains approach [Rea+09], discussed in Sec-
tion 4.2.5, reduces the influence of the label ordering in CC, by averaging
the multi-label predictions over a (randomly chosen) set of orderings, with a
label-wise majority vote. Although ECC was shown to be more competitive
than CC in terms of several evaluation metrics, the actual impact of the en-
semble averaging for Hamming loss or subset 0/1 loss remains unknown. We
believe, as suggested in [DCH10], that the averaging used in ECC may bring
the predictions closer to the marginals.

In this experiment we used the implementations from the Mulan4 library [Tso+11]
for F-LP, BR, LP, RAkEL and HOMER, and from the Meka5 [Rea+16] library for
PCC, CC, ECC and MCC. Both the Mulan and Meka libraries being based on Weka6

[Hal+09], within each of these approaches we employed the same base learner,
an SMO linear SVM, which we also employed within F-LP. For LEAD, we used the
author’s implementation7 with a linear SVM classifier as base learner, and the K2
algorithm to learn the BN structure. We used the default parameters of each method
without any tuning, and a significance value α = 0.0001 within ILF-Compo. All
experiments were performed on an Intel(R) Pentium CPU @3.60 GHz 8GB RAM.

Results

The performance of each compared method in terms of subset 0/1 loss is reported
in Table 5.5, averaged over a 5x2-fold cross-validation for each of the 16 data sets
(original and duplicated). Note that several results are missing on large data sets for
PCC, the most time demanding procedure, when it exceeded 4 hours of computations.

4http://mulan.sourceforge.net
5http://meka.sourceforge.net
6http://www.cs.waikato.ac.nz/ml/weka
7http://cse.seu.edu.cn/PersonalPage/zhangml
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Tab. 5.5. Subset zero-one loss (mean ± std in percent) achieved by comparative methods on the
original and the duplicated benchmark, over 5x2-CV. Best results are bold-faced (lower is
better).

method emotions image scene yeast slashdot genbase medical enron

F-LP 66.2 ± 2.5 53.7 ± 1.0 31.8 ± 1.5 75.1 ± 1.0 59.1 ± 1.2 3.4 ± 1.0 32.2 ± 1.9 85.3 ± 1.2
LP 66.2 ± 2.5 53.7 ± 1.0 31.5 ± 1.0 75.1 ± 1.0 55.0 ± 0.7 3.8 ± 1.1 33.0 ± 1.3 83.8 ± 1.1

PCC 70.7 ± 1.9 59.7 ± 1.9 39.8 ± 1.0 79.6 ± 0.7 na na na na
MCC 67.9 ± 2.0 57.3 ± 1.3 37.2 ± 1.4 79.8 ± 0.9 61.9 ± 0.7 3.4 ± 1.1 33.4 ± 1.9 88.1 ± 1.2

BR 73.6 ± 1.8 76.4 ± 1.7 49.0 ± 1.2 85.5 ± 0.9 66.2 ± 0.8 3.4 ± 1.1 35.9 ± 1.6 89.3 ± 1.2
RAkEL 69.3 ± 1.6 57.8 ± 0.9 39.4 ± 1.1 81.6 ± 0.7 65.3 ± 0.7 3.2 ± 1.0 35.6 ± 1.6 89.0 ± 1.1

HOMER 71.7 ± 1.8 68.4 ± 0.9 49.4 ± 3.2 86.9 ± 1.1 64.9 ± 0.8 3.4 ± 1.2 37.9 ± 3.3 89.7 ± 1.1
CC 71.6 ± 2.4 57.9 ± 1.1 37.0 ± 1.4 80.7 ± 0.7 62.0 ± 0.9 3.3 ± 1.2 32.7 ± 1.9 88.0 ± 1.2

ECC 70.6 ± 1.8 59.7 ± 1.2 37.7 ± 1.5 79.8 ± 0.6 60.3 ± 0.9 3.1 ± 1.1 31.7 ± 2.2 86.9 ± 1.1
LEAD 76.2 ± 2.0 70.2 ± 1.6 49.9 ± 1.9 85.4 ± 0.7 69.2 ± 0.7 3.8 ± 1.5 37.4 ± 1.0 91.8 ± 0.8

method emotions2 image2 scene2 yeast2 slashdot2 genbase2 medical2 enron2

F-LP 91.8 ± 1.4 82.0 ± 1.4 58.6 ± 1.3 95.0 ± 0.6 83.9 ± 0.7 6.8 ± 1.7 62.4 ± 2.5 98.4 ± 0.4
LP 94.9 ± 1.1 87.6 ± 1.0 62.8 ± 1.7 97.5 ± 0.4 90.3 ± 0.4 33.7 ± 3.1 86.6 ± 1.6 99.3 ± 0.2

PCC 93.1 ± 1.6 85.9 ± 0.8 71.0 ± 0.5 na na na na na
MCC 93.6 ± 1.4 85.6 ± 1.1 67.9 ± 1.3 96.4 ± 0.4 86.6 ± 0.6 7.1 ± 1.7 64.4 ± 2.5 98.9 ± 0.5

BR 94.7 ± 1.3 93.7 ± 0.7 79.0 ± 1.1 98.0 ± 0.4 89.9 ± 0.6 6.8 ± 1.7 67.0 ± 2.8 99.1 ± 0.3
RAkEL 93.7 ± 0.8 89.7 ± 0.5 72.0 ± 1.4 97.8 ± 0.4 89.3 ± 0.6 6.8 ± 1.8 67.2 ± 2.9 99.2 ± 0.2

HOMER 95.5 ± 0.8 91.8 ± 0.9 79.9 ± 1.3 98.8 ± 0.5 97.0 ± 0.6 27.0 ± 3.7 82.1 ± 2.5 99.6 ± 0.3
CC 95.1 ± 1.0 83.9 ± 0.9 66.9 ± 1.2 96.5 ± 0.4 86.5 ± 0.5 7.1 ± 1.9 64.4 ± 2.8 99.0 ± 0.4

ECC 93.6 ± 1.6 84.8 ± 0.9 66.5 ± 1.8 97.0 ± 0.4 86.1 ± 0.4 7.2 ± 1.8 64.4 ± 2.8 98.7 ± 0.3
LEAD 95.9 ± 1.4 93.0 ± 0.6 80.5 ± 1.6 98.1 ± 0.4 91.3 ± 0.4 8.9 ± 1.6 65.5 ± 2.5 99.6 ± 0.2

The total running time of each method (for both training and testing) is reported in
Table 5.6, while the running time spend by ILF-Compo to learn the decompositions is
reported in Table 5.7. For clarity we defer to the appendix Figures A.1 to A.8, which
display typical decomposition graphs learned by ILF-Compo on each data set (as
defined in Theorem 5.8). For completeness we also report in the appendix several
commonly applied evaluation measures, namely the Hamming loss, the micro-F1

score and the macro-F1 score as in [TKV10].

On the original benchmark the best performing approaches are clearly LP and F-LP.
The two other approaches tailored for subset 0/1 loss, PCC and its relaxed variant
MCC, perform consistently well, while their greedy versions CC and ECC perform
reasonably. As expected BR performs poorly in every situation. Among the remaining
approaches, it is worth noting that the RAkEL approach performs always better than
BR, while the HOMER and LEAD approaches perform rather poorly. Since LEAD
follows the CC scheme for inference, the performance gap between both approaches
may be imputed either to the learned DAG structure that may be too restrictive,
or to the linear SVM that may be implemented differently than that of CC. On the
other hand HOMER shares the same base learner as all the other methods, so its bad
performance can only be imputed to its hierarchical decomposition scheme.

We may now observe the decomposition graphs displayed in Figures A.3 to A.8,
and relate these to the performance measures in Table 5.5. Several graphs like
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scene, image, yeast and emotions are densely connected, while others are surprisingly
sparse, like genbase and medical. On scene, image, yeast and emotions F-LP boils down
to the LP method, with a single ILF consisting of all the labels. This is confirmed
when inspecting Table 5.5, as F-LP and LP exhibit a similar subset 0/1 loss on these
data sets. The opposite was observed on genbase and medical, where F-LP merely
boils down to the BR method. On these two data sets the performance gap between
BR and LP is small, and F-LP performs slightly better than both approaches. This is in
nice agreement with our previous experiments with sparse structures (toy problem
2, Figures 5.10a and 5.10b). On the remaining data sets, slashdot and enron, the ILF
decomposition exhibits one dominant label factor consisting of most of the labels,
and the remaining labels as singletons. In both cases the decomposition does not
seem to benefit to F-LP, which may indicate an erroneous ILF decomposition, due
to either numerical problems within ILF-Compo or the Composition property being
violated.

On the duplicated data sets, the decomposition graphs clearly exhibit two label
factors with the original and duplicated label sets, as was expected. In such a
situation the decomposition scheme greatly benefits to F-LP, while LP seems to
bear some difficulties to efficiently perform MAP inference. Indeed, in typical
MLC problems the effective number of label combinations is rather low by nature
(see DL(D) in Table 5.4), while here that number grows quadratically due to our
particular duplication scheme. As a consequence, on the largest data sets LP is
systematically overtaken by simpler approaches such as BR, RAkEL, CC or ECC,
even though these do not yield Bayes-optimal predictions. The other Bayes-optimal
approaches PCC and MCC do not seem to suffer as much as LP from this additional
complexity, and perform consistently well across all data sets. In this setting F-LP
outmatches all the other approaches, and therefore seems particularly well suited to
scenarios that exhibit distinct label factors of important size.

Regarding the complexity of ILF-Compo, the running time for learning the decom-
position seems loosely related to the dimensionality of the data sets, as reported
in Table 5.7. However, we believe that in practice it is much more dependent to
the dependency structure between the labels and the features, such as the size of
the minimal feature subsets of the labels, which is very specific to each data set.
Admittedly, the datasets used in this experiment only contain a small to moderate
number of labels (up to 53), and the additional computational burden of ILF-Compo
to learn the decomposition may become prohibitive for larger data sets.
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Tab. 5.6. Total running time (mean in seconds) of the comparative methods for both training and
testing on the original and the duplicated benchmark, over 5x2-CV.

method emotions image scene yeast slashdot genbase medical enron

F-LP 4 3 27 122 2010 232 769 895
LP 2 3 3 43 160 8 40 872

PCC 1 3 17 1064 na na na na
MCC 0 15 1 59 865 89 299 1519

BR 1 2 4 4 60 4 9 26
RAkEL 2 6 11 17 331 13 40 145

HOMER 2 3 4 4 46 6 11 24
CC 1 3 4 4 48 6 11 26

ECC 2 12 27 31 525 29 87 229
LEAD 15 10 20 48 440 2305 1316 1825

method emotions2 image2 scene2 yeast2 slashdot2 genbase2 medical2 enron2

F-LP 6 12 103 146 11 754 2097 7103 5674
LP 68 91 62 2063 7104 93 778 6096

PCC 116 115 1604 na na na na na
MCC 14 131 145 2164 8253 411 973 7066

BR 2 12 18 21 284 12 33 123
RAkEL 10 53 97 89 1489 56 154 699

HOMER 4 15 35 19 183 14 25 53
CC 4 10 16 14 189 13 36 125

ECC 12 71 140 127 1737 125 659 1110
LEAD 97 110 165 271 5080 1373 2696 5029

Tab. 5.7. Running time to learn the ILF-Compo decomposition graph (mean ± std in seconds) on the
original and the duplicated benchmark, over 5x2-CV.

dataset original duplicated

emotions 1 ± 0 3 ± 0
image 1 ± 0 8 ± 1
scene 25 ± 10 94 ± 14
yeast 5 ± 1 26 ± 1

slashdot 1789 ± 1470 10 752 ± 12006
genbase 119 ± 3 1116 ± 12
medical 438 ± 12 4297 ± 92
enron 396 ± 9 3580 ± 61
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5.3 Application to F-measure maximization

In this section, we investigate the ILF decomposition approach for MLC under the
F -loss function, a.k.a. F -measure maximization. The F -measure, introduced in
Section 4.1.2, is a standard performance metric in information retrieval which is
used in a variety of prediction problems including binary classification, multi-label
classification and structured output prediction. Formally, the F -measure of a binary
vector h = (h1, . . . , hm) compared to a label vector y = (y1, . . . , ym) is given by

F (y, h) = 2(y · h)
y · y + h · h

, (5.2)

where · denotes the dot product operator8 and 0/0 = 1 by definition.

Optimizing the F-measure is a statistically and computationally challenging problem,
since no closed-form solution exists and few theoretical studies of the F -measure
were carried out. Some efficient approaches for F -measure maximization have been
proposed [Jan07; Ye+12], which explicitly rely on the assumption of conditional
independence of the labels (somewhat similarly to BR for subset 0/1 loss). Under
this restricted assumption, only O(m) parameters are required, that is, the marginal
probability p(yi|x) of each label, and inference can be made in O(m2). While such
an assumption naturally holds in standard binary classification (labels are i.i.d.), in
domains like MLC it is in general not tenable any more.

Recently, Dembczynski et al. [Dem+11] presented an exact algorithm for F -measure
maximization, named General F-measure MaximizerGFM (GFM), which requires O(m2)
parameters and can infer Bayes-optimal predictions in O(m3). While computation-
ally expensive, this method is statistically consistent and results in state-of-the art
performance in multi-label classification [Wae+14]. Here, we will show how our ILF
decomposition approach can be applied to the F -measure maximization problem,
by reducing the number of parameters required by GFM to O(m2/n) (in the best
case, assuming the label set can be partitioned into n conditionally independent
subsets), with an inference complexity contained within O(m3). In the following we
introduce the Factorized-GFMF-GFM (F-GFM) method [GA16a], and evaluate its empirical
performance on a carefully designed set of experiments.

8In a binary setting the dot product h · y offers a convenient notation to count the number of positives
values common to both h and y.
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5.3.1 Factorized GFM

We start by reviewing the General F -measure Maximizer method presented in
Dembczynski et al. [Dem+11]. To keep our notation uncluttered, without loss of
generality, the conditioning on X will be made implicit in the remainder of this
work, so that h(x) = h and p(y|x) = p(y). Assuming the underlying probability
distribution p is known, the optimal prediction h∗ that maximizes the expected
F-measure is given by

h∗ = arg max
hP{0,1}m

Ey[F (y, h)] = arg max
hP{0,1}m

∑
yP{0,1}m

p(y)F (y, h). (5.3)

Jansche [Jan07] noticed that (5.3) can be solved via outer and inner maximization.
The inner maximization step is

h(k) = arg max
hPHk

Ey[F (y, h)], (5.4)

where Hk = {h P {0, 1}m|h · h = k}, followed by an outer maximization

h∗ = arg max
hP{h(0),...,h(m)}

Ey[F (y, h)]. (5.5)

The outer maximization (5.5) can be done in linear time by simply checking all m+1
possibilities. The main effort is then devoted to solving the inner maximization (5.4).
For convenience, Waegeman et al. [Wae+14] introduce the following quantities:

sy = y · y, Δik =
∑
yPYi

2p(y)
sy + k

,

with Yi = {y P {0, 1}m|yi = 1}. The first quantity is the number of ones in the
label vector y, while Δik is a specific marginal value for the i-th label. Using these
quantities, the maximizer in (5.4) becomes

h(k) = arg max
hPHk

m∑
i=1

hiΔik,

which boils down to selecting the k labels with the highest Δik value. In the special
case of k = 0, we have h(0) = 0 and Ey[F (y, h(0))] = p(y = 0). As a result, it is not
required to estimate the 2m parameters of the whole distribution p(y) to find the
F -measure maximizer h∗, but only m2 + 1 parameters: the values of Δik which take
the form of an m × m matrix Δ, plus the value of p(y = 0). Once these parameters
are known, obtaining the optimal F -measure prediction can be done in O(m2) with
the GFM algorithm (see [Wae+14] for details).
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In order to combine GFM with a training algorithm, Waegeman et al. [Wae+14]
decompose the Δ matrix as follows. Consider the probabilities

pis = p(yi = 1, sy = s), i, s P {1, . . . , m}

that constitute an m × m matrix P, along an m × m matrix W with elements

wsk = 2
s + k

,

then it can be easily shown that

Δ = PW. (5.6)

If the matrix P is taken as an input by GFM then its computational complexity is
dominated by the matrix multiplication (5.6), which is solved naively in O(m3).

In view of this result, Dembczynski et al. [Dem+11] establish that modeling pairwise
or higher degree dependences between labels is not necessary to obtain an optimal
solution, only a proper estimation of marginal quantities pis is required to take the
number of co-occurring labels into account. With our ILF decomposition approach,
we will show that modeling high degree dependences between the labels can help
to obtain better estimates of pis, and thereby better predictions within the GFM
framework.

F-GFM parameters

Assuming an ILF decomposition of the label set, the pis parameters can be recon-
structed from a smaller number of parameters estimated locally within each label
factor, at a computational cost of O(m3).

Let mk denote the number of labels in a particular label factor, we introduce for
every label factor YFk

= {Y1, . . . , Ymk
} the following terms,

pk
is = p(yi = 1, syFk

= s), i, s P {1, . . . , mk},

which constitute an mk × mk matrix Pk.

Given a factorization of the label set into label factors, our proposed method F-GFM
requires to estimate, for each label factor, a local matrix Pk of size mk

2, and then
combine these to reconstruct the global matrix P of size m2. The total number of
parameters is therefore reduced from m2 to

∑n
k=1 mk

2. It is easily shown that, in
the best case, the total number of parameters is m2/n when mk = m/n for every
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label factor, and the worst case is (n − 1) + (m − n + 1)2 when all the label factors,
but one, are singletons. In both cases the number of parameters is reduced, which
results in better probability estimates and a better robustness of the model.

Prior to recovering P, we must introduce some extra parameters d. Consider, for
each label factor YFk

, the following probabilities,

dk
s = p(syFk

= s), s P {0, . . . , mk},

which form a vector dk of size mk + 1. These do not constitute additional free pa-
rameters, as each dk vector can be recovered from a Pk matrix in mk

2 operations.

Recovering dk

Note that the same method holds to recover dk from Pk or d from P, therefore
in the following we will drop the superscript k to keep our notations uncluttered.
Consider the following expression for pis and ds,

pis =
∑

yP{0,1}m

p(y) · I[sy = s] · I[yi = 1],

ds =
∑

yP{0,1}m

p(y) · I[sy = s].

Notice that, for a particular y P {0, 1}m, the following equality holds,

I[sy = s] ·
m∑

i=1
I[yi = 1] = s · I[sy = s].

Therefore, when s > 0, ds can be expressed as

ds =
∑

yP{0,1}m

p(y) · I[sy = s] · 1
s

m∑
i=1

I[yi = 1].

This expression can be further simplified in order to express ds as a composition of
pis terms,

ds = 1
s

m∑
i=1

pis, ∀s P {1, . . . , m}.

We may recover d0 from

d0 = 1 −
m∑

s=1
ds.
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As a result, each vector dk can be obtained from Pk in mk
2 operations. Interestingly,

because p(y = 0) = d0, this additional parameter can actually be inferred from P at
the expense of m2 operations, thereby reducing the number of parameters required
by GFM to m2 instead of m2 + 1.

Recovering P

We may now describe the global procedure to recover P and p(y = 0) from the
individual Pk matrices, in O(m3).

When n = 2. Let us first assume that there are only two label factors YF1 and YF2 .
Consider a label Yi that belongs to YF1 , from the marginalization rule pis may be
decomposed as follows,

pis =
∑
s′

p(yi = 1, sy = s, syF1
= s′). (5.7)

The inner term of this sum factorizes because of the label factor assumption. First,
recall that sy = syF1

+ syF2
, which allows us to write

p(yi = 1, sy = s, syF1
= s′) = p(yi = 1, syF1

= s′, syF2
= s − s′).

Second, due to the label factor assumption, i.e. YF1 ⊥⊥ YF2 , we have

p(yi, sy, syF1
) = p(yi, syF1

) · p(syF2
). (5.8)

We may combine (5.8) and (5.7) to obtain

pis =
∑
s′

p(yi = 1, syF1
= s′) · p(syF2

= s − s′). (5.9)

Finally, we have necessarily s′ ≤ s and s′ ≤ m1, which implies s′ ≤ min(s, m1). Also,
s − s′ ≤ m2 and s′ ≥ 1 because yi = 1, which implies s′ ≥ max(1, s − m2). So we
can re-write (5.9) as follows,

pis =
min(s,m1)∑

s′=max(1,s−m2)
p1

is′ · d2
s−s′ . (5.10)

In the case where Yi P YF2 , we obtain a similar result. In the end, given that both
Pk and dk are known for YF1 and YF2 , (5.10) allows us to recover all term in P
in (m2 + 1)m12 + (m1 + 1)m22 operations. Assuming that only the Pk matrices are
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known, we must add up the additional cost for recovering the dk vectors, which
brings the total computational burden to (m2 + 2)m12 + (m1 + 2)m22.

For any n. The same procedure can be used iteratively to merge P1 and P2 into
a matrix P′ of size (m1 + m2)2, then combine this matrix with P3 to form a new
matrix of size (m1 + m2 + m3)2, and so on until every label factor is merged into a
matrix of size m2. In the end we obtain P in a total number of operations equal to

n∑
i=2

(mi + 2)(
i−1∑
j=1

mj)2 + m2
i (2 +

i−1∑
j=1

mj).

To avoid tedious calculations, we can easily compute a tight upper bound of the
number of computations, i.e.

max
m1,...,mn

n∑
i=2

(mi + 2)

⎛
⎝i−1∑

j=1
(mj + 2)

⎞
⎠
⎛
⎝ i∑

j=1
(mj + 2)

⎞
⎠ s.t.

n∑
i=1

mi = m.

Solving ∇ L(m1, . . . , mn, λ) = 0 yields

mi =
(
(m + 2n)2 − λ

)1/2
+ 2n, ∀i P {1, . . . , n},

which implies that all the label factors have equal size. As a result, with mi = m/n

for every label factor we obtain an upper bound on the worst case number of
operations equal to (m

n + 2)3(n2 − 1). Thus, the overall complexity to recover P is
bounded by O(m3).

Given that the label factors are known and that every Pk matrix has been estimated,
the whole F-GFM procedure for recovering P and inferring a Bayes-optimal prediction
is presented in Algorithm 14, with an overall complexity within O(m3), just as
GFM.

Parameter estimation

Our proposed method F-GFM requires to estimate for each label factor YFk
the

mk × mk matrix Pk, instead of the whole m × m matrix P in GFM. Still, the problem
of parameter estimation in GFM and F-GFM is essentially the same, that is, estimating
the matrix P (resp. Pk) for a particular input x, given a set of training samples
(x, y) (resp. (x, yFk

)).

Dembczynski et al. [Dem+13] propose a solution to estimate the pis terms directly
by solving m multinomial logistic regression problems with m + 1 classes, with one
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Algorithm 14 Factorized-GFM

Require: Y the label set, YF1 , . . . , YFn the label factors, m1, . . . , mn their size and
P1, . . . , Pn their matrix of pk

i,s parameters.
Ensure: h∗ the F-measure maximizing prediction.

1: Initialize m ← 0, P ← ∅, d ← {1}
2: for all k P {1, . . . , n} do
3: m′ ← m, P′ ← P, d′ ← d, m ← m′ + mk

4: Initialize dk = {d0, . . . , dmk
} a vector of size mk + 1

5: for all s P {1, . . . , mk} do 	 1) recover dk from Pk

6: dk
s ← s−1 ∑mk

i=1 pk
i,s

7: dk
0 ← 1 − ∑mk

s=1 dk
s

8: Initialize P a zero matrix of size m × m
9: for all i P {1, . . . , mk} do 	 2) merge Pk and d′ into P

10: for all s1 P {1, . . . , mk} do
11: for all s2 P {0, . . . , m′} do
12: pi,s1+s2 ← pi,s1+s2 + pk

i,s1 · d′
s2

13: for all i P {1, . . . , m′} do 	 3) merge P′ and dk into P
14: for all s1 P {1, . . . , m′} do
15: for all s2 P {0, . . . , mk} do
16: pi+mk,s1+s2 ← pi+mk,s1+s2 + p′

i,s1 · dk
s2

17: Initialize d a zero vector of size m + 1
18: for all s P {1, . . . , m} do 	 4) recover d from P
19: ds ← s−1 ∑m

i=1 pi,s

20: d0 ← 1 − ∑m
s=1 ds

21: h∗ ← GFM(P, d0) 	 5) obtain h∗ from P and d0
22: Rearrange h∗ to match the order of the labels in Y.
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mapping (x, y) ��� (x, y = yi · sy) for each label. However, we observed that the
parameters estimated with this approach are inconsistent, that is, they often result
in a negative probability for d0 when trying to recover d from P. To overcome this
numerical problem, we found a straightforward and effective approach. Instead of
estimating the pis terms directly, we can proceed in two steps. From the chain rule
of probabilities, we have that

pis︷ ︸︸ ︷
p(yi, sy|x) =

ds︷ ︸︸ ︷
p(sy|x) ·

pi|s︷ ︸︸ ︷
p(yi|sy, x) . (5.11)

The idea is to estimate each of these two terms independently. First, the ds terms
are obtained from a multinomial logistic regression with m + 1 classes, using the
mapping (x, y) ��� (x, y = sy). Second, for each label Yi we estimate the pi|s terms
with a binary logistic regression model, using the mapping (x, y) ��� ((x, sy), y = yi).
To summarize, for each label factor, one multinomial logistic regression model with
mk + 1 classes, and mk binary logistic regression models are trained. In order to
estimate the pk

is terms, we combine the outputs of the multinomial and the binary
models according to (5.11). This approach has the desirable advantage of producing
calibrated Pk matrices and consistent dk vectors, which appears to be crucial for the
success of F-GFM. Notice that in our experiments this approach was also beneficial
to GFM in terms of MLC performance.

5.3.2 Toy problem

In this section, we compare GFM and F-GFM on a synthetic toy problem to assess the
effective improvement in classification performance due to the label factorization.
The code to reproduce this experiment is available online9.

Setup details

Consider Y = {Y1, . . . , Y8} 8 labels and X = {X1, . . . , X6} 6 binary random vari-
ables. The true joint distribution p(x, y) is encoded in a Bayesian network (one
example is displayed in Figure 5.11) which imposes different label factor decomposi-
tions and serves as a data-generative model. In this structure, each of the features
X1, X2, X3, X4 is a parent to every label, which allows for a relationship between X
and Y, each label factor YFk

is made fully connected by placing an edge Yi ��� Yj for
every Yi, Yj P YFk

, i < j. The remaining features X5 and X6 are totally disconnected
from the labels, and serve as irrelevant features. We consider 4 distinct structures
with the following ILF decompositions:

9https://github.com/gasse/fgfm-toy

178 Chapter 5 Irreducible label factors



• DAG 1: FI = {{Y1, Y2}, {Y3, Y4}, {Y5, Y6}, {Y7, Y8}};
• DAG 2: FI = {{Y1, Y2, Y3, Y4}, {Y5, Y6, Y7, Y8}};
• DAG 3: FI = {{Y1, Y2, Y3, Y4, Y5, Y6}, {Y7, Y8}};
• DAG 4: FI = {{Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8}}.

X1,2,3,4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Fig. 5.11. BN structure of our toy problem with DAG 2, i.e. two label factors {Y1, Y2, Y3, Y4} and
{Y5, Y6, Y7, Y8}. Note that nodes X1, X2, X3 and X4 are grouped up for readability.

Once these BN structures are fixed, the next step is to generate random distributions
p(x, y) to sample from. For each BN structure we generate a probability distribution
by sampling uniformly the conditional probability table of each node from a unit
simplex, as discussed in Smith and Tromble [ST04]. We consider 100 such random
distributions, and each time we generate 7 training data sets with 50, 100, 200, 500,
1000, 2000 and 5000 samples, and one test set with 5000 samples.

In order to assess separately the influence of the F-GFM procedure and ILF-Compo,
we run F-GFM first by using true ILF decomposition of the scenario, and then by
using the decomposition obtained with ILF-Compo from the training data. Within
ILF-Compo we employ a significance level α = 0.01, and to estimate the F-GFM
parameters we use the standard multinomial logistic regression model from the
nnet[VR02] R package, with weight decay regularization and λ chosen over a 3-fold
cross validation.

Results

In Figure 5.12 we report the test set F -measure obtained by GFM and F-GFM with
the true decomposition (true) and the learned decomposition (learn), with respect to
the training size, for each scenario, averaged over the 100 repetitions. As expected,
the more data available for training, the more accurate the parameter estimates,
and thus the better the F -measure on the test set. F-GFM based on ILF-compo
outperforms the original GFM method, sometimes by a significant margin (see
Fig.5.12c and 5.12d with small sample sizes). Interestingly, F-GFM based on the
learned ILF decomposition performs not only better than GFM, but also better than
F-GFM based on the true ILFs, especially in the last scenario with a single ILF of size
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(b) DAG 2 (4, 4)
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(c) DAG 3 (6, 2)
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Fig. 5.12. Mean F -measure of GFM and F-GFM on each DAG, with 7 different training sizes (50, 100,
200, 500, 1000, 2000, 5000) displayed on a logarithmic scale, averaged over 100 repetitions
with random distributions. F-GFM (true) uses the true decomposition, while F-GFM (ILF)
uses the decomposition learned with ILF-Compo from the training data.
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Tab. 5.8. F -measure (mean ± std in percent) achieved by F-GFM and GFM on the original benchmark,
over 5x2-CV. Best results are bold-faced (higher is better).

method emotions image scene yeast slashdot genbase medical enron

F-GFM 64.9 ± 1.1 57.7 ± 1.0 74.8 ± 0.9 64.8 ± 0.4 56.6 ± 1.2 98.5 ± 0.6 75.7 ± 1.9 59.1 ± 0.8
GFM 64.9 ± 1.1 57.7 ± 1.0 75.0 ± 0.5 64.8 ± 0.4 58.3 ± 0.6 98.6 ± 0.7 81.7 ± 1.5 56.6 ± 0.6

8 with small sample sizes. The reason is that the independence relations learned
by ILF-Compo are actually observed in the small training sets while being false in
the true distribution. As this false decomposition is found almost valid in small
sample sizes — at least from a numerical point of view — the restricted parameter
space acts as a regularizer which turns out to be beneficial to F-GFM. This is not
surprising as Binary Relevance is sometimes shown to outperform other sophisticated
MLC techniques exploiting the label correlations when training data are insufficient
(see [Lua+12], or Figure 5.10b in our previous experiment), while being based
on wrong independence assumptions. The same remark holds for the Naive Bayes
model in standard multi-class learning tasks, which wrongly assumes the features
to be independent given the output. Overall, in this experiment F-GFM with the
learned ILF decomposition behaves usually as good or better than F-GFM based on
the ground truth ILF decomposition, which assesses the effectiveness of ILF-Compo
and corroborates our theoretical results obtained in Section 5.1.

5.3.3 Real-world benchmark

We now report on an experiment performed on 8 real-world multi-label data sets,
that we previously introduced in Section 5.2.3 (see Table 5.4 for details). Here
again we employ IFL-Compo with significance level α = 0.0001 to learn the ILF
decomposition. We report in Table 5.8 the performance of GFM and F-GFM in terms
of test set F -measure, averaged over a 5x2-fold cross-validation for each data set.
On the four data sets emotions, image, scene and yeast, ILF-Compo does not exhibit an
ILF decomposition, therefore F-GFM resumes to GFM and shows similar performance.
On the remaining data sets, the empirical results are not very convincing, as F-GFM
is shown to outperform GFM only on the enron data set. On genbase it performs
comparably with GFM, while on slashdot and medical it does significantly worse. A
potential explanation for this weak performance is that these three data sets exhibit
many singleton ILFs, that is, many label factors with a single label. We observed that
in such a situation F-GFM (Algorithm 14) ends up multiplying many probabilities
of different magnitudes, which can lead to inconsistent estimates of the P matrix
due to a snowball effect. We believe that this issue could be alleviated in practice, by
implementing F-GFM more efficiently under careful numerical considerations.
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5.4 Discussion

In this chapter, we introduced the concept of irreducible label factors (ILFs), that
is, the decomposition of a conditional probability distribution p(y|x) into minimal
disjoint marginal distributions, in order to simplify the multi-label classification
problem. We showed that a correct constraint-based procedure exists to identify the
ILFs in the general case with only O(m2) pairwise tests of conditional independence,
and derived an efficient procedure under the Composition assumption, ILF-Compo. In
a series of synthetic and benchmark experiments, we applied our ILF decomposition
approach to the MLC problem under both the subset 0/1 loss and the F -loss, two
popular loss functions in the MLC literature.

For subset 0/1 loss minimization, the ILF decomposition allows for a drastic reduction
of the number of parameters to be extracted from the joint distribution p(y|x),
from O(2m) to O(n2 m

n ) (assuming n ILFs of equal size). Due to this parameter
reduction, one can obtain stronger probability estimates and in the end more accurate
Bayes-optimal predictions, as was shown in our experiments. Regarding inference
complexity, due to the ILF decomposition it reduces from O(2m) to O(n2 m

n ), which
is also much desirable.

For F -measure maximization, the ILF decomposition also allows for a significant
parameter reduction, from O(m2) to O(m2

n ) (again, assuming n ILFs of equal size),
and thereby stronger probability estimates. Regarding inference complexity, in the
context of the F -measure we were only able to show that it remains within O(m3),
that is, no higher than inference complexity without ILF decomposition. Interestingly,
Ye et al. [Ye+12] show that in the context of a fully factorized distribution (i.e., all
ILFs are singletons) inference complexity under the F -loss can be reduced to O(m2).
Therefore, we believe that for intermediate decompositions the inference complexity
may lie in-between O(m2) and O(m3), though we were not able to derive such a
procedure.

While we focused here on the subset 0/1 loss and F -loss, we would like to point out
that the ILF decomposition of p(y|x) may also help minimize other loss functions
for which the Bayes-optimal solution is unknown or too expensive to compute, such
as the Jaccard loss. As discussed in Section 4.2.5, Monte Carlo methods can be
used to derive approximate Bayes-optimal predictions, by minimizing the empirical
loss expectation over s independent samples {y(i)}s

i=1 drawn from the estimated
conditional distribution p(y|x), i.e.,

h�(x) = arg min
ŷ

s∑
i=1

L(ŷ, y(i)).
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Assuming an ILF decomposition, this can be achieved by drawing a sub-sample
in each label factor YF from the conditional joint distribution p(yF |x) and then
concatenating them all to form a complete observation. From this point of view, the
ILF decomposition can help to solve the MLC problem more efficiently under any
loss function.

Admittedly, the ILF approach has one major drawback: it relies on the existence of
an ILF decomposition of p(y|x). From Figures A.1 to A.8 we can see that this does
not happen very often in real-world problems. Still, there may be some particular
situations (in MLC and more broadly multi-variate supervised learning) where such a
decomposition is inherent to the problem, in which case our ILF learning procedures
may prove particularly useful. Also, we have shown that the F-GFM procedure
proposed in Section 5.3.1 could perform exact F -measure maximization when given
an ILF decomposition, but we did not investigate on its empirical performance when
given an arbitrary decomposition. It may be that such an approximate F -measure
maximization procedure could provide a useful alternative when the number of
parameters to estimate within GFM becomes too prohibitive.
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Conclusion and perspectives

In this thesis, we addressed the specific problem of probabilistic graphical model
structure learning, that is, finding the most efficient structure to represent a proba-
bility distribution, given only a sample set D ∼ p(v). Our main contributions are 1)
a new hybrid algorithm for Bayesian network structure learning, H2PC, presented
in Chapter 3, which achieves state-of-the-art performance; and 2) a new generic
approach to the multi-label classification problem based on the identification of the
irreducible label factors (ILFs) of the conditional distribution of the labels, with a
series of quadratic constraint-based characterizations presented in Chapter 5.

The ILF approach is theoretically very appealing, as it breaks down the label set Y
into a unique partition of irreducible and conditionally independent components.
This decomposition then allows for a robust learning of p(y|x) due to the drastic
reduction in the number of parameters to be estimated, and an efficient MAP
inference due to its natural decomposition into a series of independent and smaller
sub-problems. Still, the ILF approach has one inherent major drawback: an ILF
decomposition must exist. We discuss below some research perspectives regarding
this limitation.

First, we would like to point out that the ILF concept can also be found in Sum-
Product Network (SPN) models, discussed in Section 4.3.5. Indeed, ILF learning is an
essential task in current Sum-Product Network (SPN) structure learning algorithms
[GD13], as the splitting criterion of a product node is by definition a factorization
of the current distribution into disjoint marginal distributions. When located at the
top-level of the SPN, a product node corresponds to a decomposition of p(v) into
(irreducible) disjoint factors, while when located at a lower level, it corresponds
to a decomposition of p(v|h) with H some hidden variable, that is, a contextual
decomposition. In this sense SPNs push the concept of ILFs one step further, by
allowing for both global and contextual decompositions. Interestingly, the procedure
proposed in [GD13] to "partition V into approximately independent subsets Vj" is
actually a direct instantiation of Theorem 5.7 with Y = V and X = ∅, and therefore
is provably correct and optimal (i.e., it yields independent and irreducible subsets)
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Fig. 5.1. Two undirected chordal graphs, i.e., decomposable models.

when p supports the Composition property. Therefore, we believe that the global
problem of SPN structure learning may be an interesting follow-up to our work. A
direct question could be: which mixture model p(v) = ∑

h p(h)p(v|h) allows for a
nice ILF decomposition of each p(v|h)?

Second, in this thesis we did not consider biased ILF decompositions, that is, im-
posing an arbitrary decomposition when none exists. Under this relaxation one can
obtain biased but simple models of p(y|x), which can be preferable to correct but
complex ones, due to their computational tractability and their relative immunity to
over-fitting. Such an approach is quite popular when learning decomposable models
from data, e.g., tree models [CL68] or low-treewidth models [BJ01]. In the context
of ILF decompositions, the problem of learning the least biased model may then
formulate as: which decomposition violates the least the dependencies in the data,
with ILFs of maximum size 6?

Finally, we notice that the disjoint factorization of ILFs bears a close resemblance
to the non-disjoint factorization of decomposable models1. For simplicity, consider
Y = V and X = ∅. An ILF factorization is expressed as a product of disjoint marginal
distributions,

p(v) =
∏

VF PF
p(vF ), (5.1)

where F is a partition of V. On the other hand, the factorization of a decomposable
model is expressed as a ratio of products of non-disjoint marginal distributions,

p(v) =
∏

VF PF p(vF )∏
VI PI p(vI) , (5.2)

where F is a cover of V, and I contains different intersects between elements of
F . Equations (5.1) and (5.2) are best represented by undirected chordal graphs,
as in Figure 5.1. In such a structure, p(v) is expressed as the product of the
marginal distribution of each maximal clique in the graph, divided by the product
of marginal distributions of clique intersections. Clearly, decomposable models are

1Decomposable models are briefly discussed in Section 2.1.2.
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more expressive than ILF models, while retaining many interesting properties such
as a local estimation of each marginal distribution, and MAP inference complexity
bounded by the largest clique size. An interesting follow-up to our work would
be to extend our theoretical results on ILFs to the broader class of decomposable
models. To our knowledge, the characterization of decomposable models with CI
tests remains an open problem [Stu05][§9.2, Direction 2].
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ASupplementary material

A.1 Decomposition graphs
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Fig. A.1. Typical ILF-Compo decomposition graphs for emotions and emotions2.
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Fig. A.2. Typical ILF-Compo decomposition graphs for image and image2.
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Fig. A.3. Typical ILF-Compo decomposition graphs for scene and scene2.
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Fig. A.4. Typical ILF-Compo decomposition graphs for yeast and yeast2.
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Fig. A.6. Typical ILF-Compo decomposition graphs for genbase and genbase2.
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Fig. A.7. Typical ILF-Compo decomposition graphs for medical and medical2.
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Fig. A.8. Typical ILF-Compo decomposition graphs for enron and enron2.
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A.2 Additional benchmark measures
Tab. A.1. Hamming loss (mean ± std in percent) achieved by comparative methods on the original

and the duplicated benchmark, over 5x2-CV. Best results are bold-faced (lower is better).

method emotions image scene yeast slashdot genbase medical enron

F-LP 20.5 ± 1.4 19.7 ± 0.5 9.4 ± 0.3 21.0 ± 0.2 4.7 ± 0.1 0.1 ± 0.0 1.0 ± 0.0 5.6 ± 0.1
LP 20.5 ± 1.4 19.7 ± 0.5 9.3 ± 0.3 21.0 ± 0.2 4.9 ± 0.1 0.2 ± 0.1 1.2 ± 0.1 5.7 ± 0.1

PCC 21.5 ± 0.8 22.2 ± 1.0 11.6 ± 0.3 21.2 ± 0.4 na na na na
MCC 20.6 ± 1.4 20.8 ± 0.6 11.1 ± 0.5 21.5 ± 0.6 5.1 ± 0.1 0.1 ± 0.0 1.1 ± 0.0 6.0 ± 0.2

BR 20.2 ± 0.5 19.9 ± 0.3 11.0 ± 0.2 20.1 ± 0.3 4.9 ± 0.1 0.1 ± 0.0 1.1 ± 0.0 6.0 ± 0.1
RAkEL 19.4 ± 0.7 19.1 ± 0.4 9.5 ± 0.3 20.1 ± 0.2 4.8 ± 0.1 0.1 ± 0.0 1.1 ± 0.0 5.8 ± 0.1

HOMER 20.9 ± 0.8 21.7 ± 0.5 12.3 ± 0.9 24.0 ± 0.7 5.6 ± 0.1 0.1 ± 0.1 1.5 ± 0.2 6.4 ± 0.1
CC 21.8 ± 1.2 20.8 ± 0.6 11.1 ± 0.5 21.4 ± 0.5 5.2 ± 0.1 0.1 ± 0.1 1.0 ± 0.1 6.0 ± 0.1

ECC 20.5 ± 0.9 19.9 ± 0.5 9.9 ± 0.4 20.4 ± 0.3 4.5 ± 0.1 0.1 ± 0.1 1.0 ± 0.1 5.4 ± 0.1
LEAD 21.2 ± 1.0 19.4 ± 0.4 10.7 ± 0.4 20.1 ± 0.3 4.1 ± 0.0 0.2 ± 0.1 1.1 ± 0.0 5.1 ± 0.1

method emotions2 image2 scene2 yeast2 slashdot2 genbase2 medical2 enron2

F-LP 23.5 ± 0.7 21.3 ± 0.5 10.6 ± 0.2 23.1 ± 0.3 4.8 ± 0.1 0.1 ± 0.0 1.2 ± 0.0 5.9 ± 0.1
LP 27.4 ± 0.8 25.2 ± 0.5 11.7 ± 0.3 24.6 ± 0.4 6.5 ± 0.1 1.2 ± 0.1 2.6 ± 0.0 7.0 ± 0.1

PCC 22.9 ± 0.6 22.9 ± 0.6 13.2 ± 0.1 na na na na na
MCC 23.3 ± 0.8 22.9 ± 0.4 12.6 ± 0.2 22.4 ± 0.4 5.0 ± 0.0 0.1 ± 0.0 1.2 ± 0.0 5.7 ± 0.0

BR 22.3 ± 0.5 20.3 ± 0.3 12.7 ± 0.1 21.0 ± 0.2 4.8 ± 0.0 0.1 ± 0.0 1.3 ± 0.1 5.7 ± 0.1
RAkEL 21.8 ± 0.5 20.1 ± 0.4 11.1 ± 0.2 21.2 ± 0.2 4.7 ± 0.1 0.1 ± 0.0 1.3 ± 0.1 5.6 ± 0.1

HOMER 24.4 ± 0.5 24.3 ± 0.6 13.6 ± 0.3 25.2 ± 0.3 6.6 ± 0.2 0.8 ± 0.1 2.0 ± 0.1 7.0 ± 0.4
CC 24.5 ± 0.3 21.9 ± 0.4 12.8 ± 0.3 23.0 ± 0.4 5.0 ± 0.0 0.1 ± 0.0 1.2 ± 0.1 5.7 ± 0.0

ECC 22.5 ± 0.7 20.6 ± 0.4 11.1 ± 0.3 21.9 ± 0.3 4.4 ± 0.0 0.2 ± 0.0 1.2 ± 0.1 5.4 ± 0.1
LEAD 22.2 ± 0.6 20.5 ± 0.3 12.0 ± 0.2 20.5 ± 0.2 4.2 ± 0.0 0.2 ± 0.0 1.2 ± 0.1 5.2 ± 0.1

192 Appendix A Supplementary material



Tab. A.2. Micro-F1 score (mean ± std in percent) achieved by comparative methods on the original
and the duplicated benchmark, over 5x2-CV. Best results are bold-faced (higher is better).

method emotions image scene yeast slashdot genbase medical enron

F-LP 67.8 ± 2.1 57.1 ± 1.0 73.6 ± 0.8 63.8 ± 0.4 51.8 ± 1.1 98.5 ± 0.5 80.8 ± 1.0 51.4 ± 1.1
LP 67.8 ± 2.1 57.1 ± 1.0 73.6 ± 0.7 63.8 ± 0.4 51.5 ± 0.8 98.1 ± 0.6 77.0 ± 1.1 50.4 ± 0.5

PCC 65.6 ± 1.4 51.0 ± 2.2 67.4 ± 1.0 64.0 ± 0.6 na na na na
MCC 67.6 ± 2.2 54.4 ± 1.4 68.5 ± 1.4 63.9 ± 0.7 50.9 ± 0.9 98.5 ± 0.5 79.9 ± 1.0 50.9 ± 0.8

BR 64.4 ± 1.2 41.8 ± 2.2 67.4 ± 0.8 63.1 ± 0.6 51.3 ± 1.1 98.5 ± 0.5 79.5 ± 1.0 50.9 ± 0.8
RAkEL 68.1 ± 1.2 57.4 ± 0.9 72.4 ± 0.9 65.1 ± 0.4 51.9 ± 0.9 98.5 ± 0.5 79.6 ± 1.0 52.2 ± 0.8

HOMER 67.5 ± 1.2 52.7 ± 1.1 64.0 ± 2.7 64.8 ± 0.6 47.4 ± 1.0 98.5 ± 0.6 73.4 ± 3.0 48.8 ± 0.7
CC 64.4 ± 2.3 54.2 ± 1.3 68.4 ± 1.5 61.8 ± 0.8 50.3 ± 0.9 98.5 ± 0.6 80.3 ± 1.1 50.5 ± 0.8

ECC 67.1 ± 1.3 54.6 ± 1.2 71.9 ± 1.2 64.9 ± 0.5 54.1 ± 1.0 98.6 ± 0.5 81.1 ± 1.5 54.3 ± 0.6
LEAD 60.5 ± 2.1 48.4 ± 1.5 65.1 ± 1.3 62.6 ± 0.5 45.8 ± 0.8 98.3 ± 0.7 78.2 ± 0.9 47.3 ± 0.8

method emotions2 image2 scene2 yeast2 slashdot2 genbase2 medical2 enron2

F-LP 62.3 ± 1.2 54.6 ± 1.0 70.0 ± 0.6 60.1 ± 0.6 49.7 ± 0.4 98.5 ± 0.4 76.1 ± 0.7 47.1 ± 0.7
LP 55.6 ± 1.2 47.6 ± 1.0 66.3 ± 0.9 57.4 ± 0.5 34.5 ± 0.7 86.7 ± 1.0 49.2 ± 1.2 34.1 ± 2.0

PCC 63.4 ± 1.1 50.6 ± 1.2 63.4 ± 0.5 na na na na na
MCC 62.5 ± 1.6 50.6 ± 0.7 64.9 ± 0.7 61.9 ± 0.7 48.5 ± 0.5 98.4 ± 0.4 75.5 ± 1.0 50.2 ± 0.5

BR 61.6 ± 0.9 45.2 ± 0.9 63.9 ± 0.4 62.1 ± 0.5 48.4 ± 0.5 98.5 ± 0.4 75.0 ± 1.2 50.1 ± 0.5
RAkEL 63.8 ± 0.9 50.4 ± 1.0 67.9 ± 0.6 62.7 ± 0.4 49.1 ± 0.5 98.5 ± 0.4 74.8 ± 1.3 51.0 ± 0.5

HOMER 62.7 ± 0.8 52.5 ± 0.5 62.0 ± 0.7 62.3 ± 0.4 34.6 ± 0.7 91.4 ± 1.3 64.8 ± 1.4 44.2 ± 6.3
CC 59.9 ± 0.7 52.0 ± 0.9 64.5 ± 0.9 59.9 ± 0.5 48.6 ± 0.5 98.4 ± 0.4 75.4 ± 1.3 50.0 ± 0.4

ECC 63.8 ± 0.9 54.0 ± 0.8 68.7 ± 0.9 62.5 ± 0.5 51.0 ± 0.6 98.4 ± 0.4 75.4 ± 1.3 52.6 ± 0.3
LEAD 57.9 ± 1.5 44.5 ± 1.2 59.7 ± 1.4 61.7 ± 0.4 43.9 ± 0.6 97.9 ± 0.3 75.8 ± 1.1 46.9 ± 0.5

Tab. A.3. Macro-F1 score (mean ± std in percent) achieved by comparative methods on the original
and the duplicated benchmark, over 5x2-CV. Best results are bold-faced (higher is better).

method emotions image scene yeast slashdot genbase medical enron

F-LP 67.0 ± 2.2 57.8 ± 1.0 74.4 ± 0.8 41.2 ± 0.5 31.9 ± 1.1 7.3 ± 2.9 25.1 ± 2.8 18.7 ± 1.5
LP 67.0 ± 2.2 57.8 ± 1.0 74.5 ± 0.7 41.2 ± 0.5 31.4 ± 0.7 10.1 ± 4.4 24.3 ± 2.7 17.3 ± 1.3

PCC 64.2 ± 1.7 49.3 ± 3.2 68.2 ± 1.0 33.6 ± 0.7 na na na na
MCC 66.3 ± 2.0 54.4 ± 1.4 69.7 ± 1.4 37.3 ± 2.0 32.0 ± 1.1 7.3 ± 2.9 25.0 ± 2.9 18.9 ± 0.9

BR 60.3 ± 2.3 40.7 ± 2.6 68.1 ± 0.9 32.5 ± 0.5 31.8 ± 1.0 7.6 ± 2.5 24.9 ± 2.8 18.9 ± 1.0
RAkEL 65.8 ± 1.3 58.0 ± 1.0 73.4 ± 0.9 36.3 ± 0.4 32.2 ± 1.0 7.7 ± 3.4 25.0 ± 2.9 19.3 ± 1.0

HOMER 65.9 ± 1.2 53.0 ± 1.2 64.6 ± 2.8 42.2 ± 1.1 29.9 ± 1.1 7.4 ± 3.2 23.8 ± 3.0 18.7 ± 1.2
CC 60.3 ± 3.3 54.3 ± 1.5 69.6 ± 1.5 36.3 ± 1.3 31.6 ± 1.1 7.3 ± 3.7 25.0 ± 2.9 18.7 ± 1.4

ECC 65.5 ± 1.3 54.8 ± 1.4 72.8 ± 1.2 36.5 ± 0.9 32.7 ± 0.9 8.3 ± 4.0 25.0 ± 2.1 18.9 ± 1.3
LEAD 57.1 ± 2.6 48.4 ± 1.7 65.1 ± 1.4 32.4 ± 0.8 23.1 ± 1.2 4.9 ± 3.3 23.0 ± 1.5 9.8 ± 0.8

method emotions2 image2 scene2 yeast2 slashdot2 genbase2 medical2 enron2

F-LP 61.6 ± 1.0 55.2 ± 1.0 71.1 ± 0.5 39.8 ± 0.9 27.9 ± 0.7 6.2 ± 2.5 18.6 ± 0.4 14.0 ± 0.9
LP 54.7 ± 1.2 48.1 ± 0.9 67.4 ± 0.8 34.7 ± 0.5 13.0 ± 0.4 30.8 ± 3.1 11.6 ± 0.4 11.4 ± 0.8

PCC 62.6 ± 1.1 50.3 ± 1.3 64.3 ± 0.4 na na na na na
MCC 61.4 ± 2.0 50.7 ± 0.8 66.1 ± 0.6 36.7 ± 0.8 28.1 ± 0.8 5.9 ± 2.1 18.1 ± 0.6 16.3 ± 0.6

BR 59.6 ± 1.0 45.0 ± 0.9 64.8 ± 0.4 33.8 ± 0.2 27.7 ± 0.8 6.1 ± 2.3 18.3 ± 0.6 16.3 ± 0.6
RAkEL 62.5 ± 1.0 50.5 ± 1.0 68.8 ± 0.6 36.5 ± 0.3 27.8 ± 0.7 6.4 ± 2.8 18.2 ± 0.7 16.2 ± 0.6

HOMER 61.7 ± 0.8 52.9 ± 0.5 63.1 ± 0.8 42.6 ± 1.0 22.7 ± 1.0 6.4 ± 2.7 21.1 ± 1.9 13.8 ± 3.8
CC 58.1 ± 0.8 52.3 ± 0.9 65.7 ± 0.7 38.8 ± 0.7 28.3 ± 0.7 6.5 ± 2.8 18.3 ± 0.8 16.2 ± 0.6

ECC 62.6 ± 1.1 54.4 ± 0.8 69.9 ± 0.9 38.0 ± 0.6 27.7 ± 0.7 6.3 ± 2.2 18.3 ± 0.8 15.9 ± 0.7
LEAD 53.8 ± 2.3 44.3 ± 1.2 59.4 ± 1.5 31.5 ± 0.5 22.1 ± 0.7 4.6 ± 2.2 20.2 ± 1.8 9.2 ± 0.6
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BProofs

For the sake of conciseness, the obvious Symmetry property (i.e., X ⊥⊥ Y | Z equiva-
lent to Y ⊥⊥ X | Z) will be used implicitly in the proofs.

Proof of Theorem 5.1. First, we prove that YFi Y YFj P F . From the LF assumption
for YFi and YFj we have YFi ⊥⊥ Y\YFi | X and YFj ⊥⊥ Y\YFj | X. Using the Weak
Union property we obtain that YFi ⊥⊥ Y \ (YFi Y YFj ) | X Y YFj \YFi , and similarly
with the Decomposition property we get YFj \ YFi ⊥⊥ Y \ (YFi Y YFj ) | X. We may
now apply the Contraction property to show that YFi Y YFj ⊥⊥ Y \ (YFi Y YFj ) | X.
Therefore, YFi Y YFj is a LF by definition. Second, we prove that YFi X YFj P
F . From the LF assumption for YFi and YFj we have YFi ⊥⊥ Y \ YFi | X and
YFj ⊥⊥ Y \ YFj | X. Using the Weak Union property we obtain YFi X YFj ⊥⊥(Y \
(YFi Y YFj )) Y (YFj \ YFi) | X Y YFi \ YFj , and similarly with the Decomposition
property we get YFi X YFj ⊥⊥ YFi \ YFj | X. We may now apply the Contraction
property to show that YFi X YFj ⊥⊥ Y \ (YFi X YFj ) | X. Therefore, YFi X YFj is
a LF by definition. Third, we prove that YFi \ YFj P F . From the LF assumption
for YFi and YFj we have YFi ⊥⊥ Y \ YFi | X and YFj ⊥⊥ Y \ YFj | X. Using the
Weak Union property we obtain YFi \ YFj ⊥⊥ Y \ YFi | X Y YFj , and similarly with
the Decomposition property we get YFj ⊥⊥ YFi \ YFj | X. We may now apply the
Contraction property to show that YFi \ YFj ⊥⊥ Y \ (YFi \ YFj ) | X. Therefore,
YFi \ YFj is a LF by definition. Finally, we prove that FI forms a partition of Y.
Consider a non-empty LF YFi P F . Then either YFi is an ILF, or one of its proper
non-empty subsets YFj Ă YFi is an ILF and the remaining set YFi \ YFj is a non-
empty LF. By applying the same reasoning recursively, the non-empty LF Y P F
breaks down into an irreducible partition of ILFs. Now, consider two distinct ILFs
YFi , YFj P FI , then YFi X YFj is a LF, which is necessarily empty due to the ILF
assumption for YFi or YFj . As a result all ILFs are mutually disjoint, and FI forms a
unique partition of Y.

We now introduce Lemmas B.1 and B.2 that will be appear recurrently our subsequent
demonstrations.

Lem. B.1 Two distinct labels Yi and Yj belong to the same irreducible label factor if there exists
Z Ď Y \ {Yi, Yj} such that {Yi} ⊥
⊥{Yj} | (X Y Z).
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Proof of Lemma B.1. By contradiction, suppose Yi and Yj do not belong to the same
irreducible label factor, and let YFi denote the irreducible label factor to which Yi

belongs. From the label factor definition we have YFi ⊥⊥ Y \ YFi | X. Let Z denote
any arbitrary subset of Y \ {Yi, Yj}, we can apply the Weak Union property to obtain
YFi \ Z ⊥⊥ Y \ (YFi Y Z) | X Y Z. Then, from the Decomposition property we have
{Yi} ⊥⊥{Yj} | X Y Z. This is true for every such a Z subset, which concludes the
proof.

Lem. B.2 Let YF be an irreducible label factor. Then, for every nonempty proper subset Z of YF ,
we have Z ⊥
⊥ YF \ Z | X Y Y \ YF .

Proof of Lemma B.2. By contradiction, suppose such a Z exists with Z ⊥⊥ YF \Z | XY
Y\YF . From the label factor assumption of YF , we also have that YF ⊥⊥ Y\YF | X,
and therefore Z ⊥⊥ Y \ YF | X due to the Decomposition property. We may now
apply the Contraction property on these two statements to obtain Z ⊥⊥ Y \ Z | X
which contradicts the irreducible label factor assumption for YF . This concludes the
proof.

Proof of Theorem 5.3. If a path exists between Yi and Yj in G then owing to Lemma B.1
all pairs of successive labels in the path are in the same ILF, and by transitivity Yi

and Yj necessarily belong to the same ILF. We may now prove the converse. Suppose
that Yi and Yj belong to the same irreducible label factor, denoted YF . Define
{V, W} a partition of Y such that Yi P V and Yj P W. Then, owing to Lemma B.2,
we have that V X YF ⊥
⊥ W X YF | X Y Y \ YF . Using the Weak Union property,
we obtain V ⊥
⊥ W | X. Consider V1 an arbitrary label from V. Using the Con-
traction property, we have that either {V1} ⊥
⊥ W | X or V \ {V1} ⊥
⊥ W | X Y {V1}.
Consider V2 another arbitrary label from V\{V1}, we can apply the Contraction prop-
erty again on the second expression to obtain that either {V2} ⊥
⊥ W | X Y {V1}or
V \ {V1, V2} ⊥
⊥ W | X Y {V1, V2}. If we proceed recursively, we will necessar-
ily find a variable Vk P V such that {Vk} ⊥
⊥ W | X Y {V1, . . . , Vk−1}. Likewise,
we can proceed along the same line to exhibit a variable Wl P W such that
{Vk} ⊥
⊥{Wl} | X Y {V1, . . . , Vk−1} Y {W1, . . . , Wl−1}. In other words, for every
partition {V, W} of the labels such that Yi P V and Yj P W, there exists at least
one label {Vk} in V, one label {Wl} in W and one subset Z Ď Y \ {Vk, Wl}, such
that {Vk} ⊥
⊥{Wl} | X Y Z. So there necessarily exists a path between Yi and Yj in G.
This concludes the proof.

Proof of Theorem 5.4. If p is faithfull to the DAG G, then the adjacency condition in
Theorem 5.3 expresses as, there exists a path in G between Yi and Yj that can be
made open by conditioning on the features X and a subset of the remaining labels
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Z Ď Y \ {Yi, Yj}. From the d-separation criterion, given a path between Yi and Yj , if
there exists an intermediate node that is a collider, then either it belongs to X and it
does not block the path, either it belongs to Y and can be added to Z so that it does
not block the path. If there exists an intermediate node that is a non-collider, then
either it belongs to Y and can be kept out of Z so that it does not block the path,
either it belongs to X and the path is always closed. So the only paths that satisfy the
condition in Theorem 5.3 are those which exhibit no intermediate non-collider node
that belongs to X. Therefore, two labels are adjacent in Theorem 5.3 iff they are
connected by a path with all intermediate non-collider nodes in Y. Moreover, if two
nodes Yi and Yj fulfill this condition, and the same is true for Yj and Yk, then Yi and
Yk also fulfill the condition by concatenating the two open paths Yi − Yj and Yj − Yk.
This is related to the Weak Transitivity property of DAGs. Therefore two labels are
connected in Theorem 5.3 and belong to the same ILF iff they are connected by a
path with all intermediate non-collider nodes in Y. This concludes the proof.

Proof of Theorem 5.5. If a path exists between Yi and Yj in G then owing to Lemma B.1
all pairs of successive labels in the path are in the same ILF, and by transitivity
Yi and Yj necessarily belong to the same ILF. We may now prove the converse.
Suppose that Yi and Yj belong to the same ILF, denoted YF . Define {Z, W}
a partition of Y such that Yi P Z and Yj P W. Then, owing to Lemma B.2,
we have that Z X YF ⊥
⊥ W X YF | X Y Y \ YF . Using the Weak Union prop-
erty, we obtain Z ⊥
⊥ W | X. To keep the subsequent developments uncluttered,
we adopt the notation {Z|Z > Yi} and {W |W > Yi} to denote respectively
the sets {Y |Y > Yi, Y P Z} and {Y |Y > Yi, Y P W}, so that Z P Z and
W P W by convention. Now, let Y1 denote the first label in the ordering, and
suppose it belongs to Z. Due to the Contraction property, we have that either
{Y1} ⊥
⊥{W |W > Y1} | X Y {Z|Z > Y1} or {Z|Z > Y1} ⊥
⊥{W |W > Y1} | X. Now,
let W1 denote the first label in {W |W > Y1}. Due to the Intersection property the
first statement extends further into {Y1} ⊥
⊥{W1} | X Y {Z|Z > Y1} Y {W |W >

Y1} \ {W1} or {Y1} ⊥
⊥{W |W > W1} | X Y {Z|Z > Y1} Y {W1} . Similarly, with
W2 the second label in {W |W > Y1} that last statement extends further into either
{Y1} ⊥
⊥{W2} | X Y {Z|Z > Y1} Y {W |W > Y1} \ {W2} or {Y1} ⊥
⊥{W |W > W2} |
X Y {Z|Z > Y1} Y {W2} . If we proceed recursively, we will necessarily find that
either {Z|Z > Y1} ⊥
⊥{W |W > Y1} | X or there exists a label Yl P {W |W > Y1}
such that {Y1} ⊥
⊥{Yl} | X Y {Y |Y > Y1} \ {Yl}. On the other hand, if Y1 belongs
to W, then similarly we have that either {Z|Z > Y1} ⊥
⊥{W |W > Y1} | X or there
exists a label Yl P {Z|Z > Y1} such that {Y1} ⊥
⊥{Yl} | X Y {Y |Y > Y1} \ {Yl}.
In both cases we end up with the same result. We may apply the same de-
duction recursively with Y2 and {Z|Z > Y1} ⊥
⊥{W |W > Y1} | X, then Y3 and
{Z|Z > Y2} ⊥
⊥{W |W > Y2} | X and so on, until we exhibit two labels Yk and Yl

(Yk < Yl) such that {Yk} ⊥
⊥{Yl} | X Y {Y |Y > Yk} \ {Yl}, with either Yk P Z and
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Yl P W or Yk P W and Yl P Z. In other words, for every partition {Z, W} of the
label set such that Yi P Z and Yj P W, there exists at least one label {Yk} in Z and
one label {Yl} in W such that {Yk} ⊥
⊥{Yl} | X Y {Y |Y > Yk} \ {Yl} if Yk < Yl, or
{Yl} ⊥
⊥{Yk} | X Y {Y |Y > Yl} \ {Yk} if Yl < Yk. So there necessarily exists a path
between Yi and Yj in G. This concludes the proof.

Proof of Theorem 5.6. We first prove by contradiction that, for any p, if Yi and Yj

belong to the same irreducible label factor then there exists a path between Yi and
Yj in G. Suppose there is no such path, i.e., there exists an ordering Y1, . . . , Yn and
a partition {Z, W} of the labels such that Yi P Z, Yj P W and every label in Z is
non-adjacent in G to every label in W. Equivalently, for every Z in Z there exists a
Markov boundary in U \ {Y |Y < Z} which does not contain any label from W, and
for every W in W there exists a Markov boundary in U \ {Y |Y < W} which does
not contain any label from Z. To keep the subsequent developments uncluttered,
we adopt the notation {Z|Z > Yi} and {W |W > Yi} to denote respectively the
sets {Y |Y > Yi, Y P Z} and {Y |Y > Yi, Y P W}, so that Z P Z and W P W by
convention. Now, let Yk denote the last label in the ordering that belongs to Z, and
Mk its Markov boundary in U \ {Y |Y < Yk}. Then, due to the Markov blanket
assumption for Mk we have that {Z|Z ≥ Yk} ⊥⊥{W |W ≥ Yk} Y X \ Mk | Mk, on
which we apply the Weak Union property to obtain {Z|Z ≥ Yk} ⊥⊥{W |W ≥ Yk} | X.
We can now turn to the preceding label in the ordering, Yk−1. If that label belongs to
Z, then similarly we have {Z|Z = Yk−1} ⊥⊥{W |W ≥ Yk−1}YX\Mk−1 | Mk−1 which
yields {Z|Z = Yk−1} ⊥⊥{W |W ≥ Yk−1} | X Y {Z|Z ≥ Yk} due to the Weak Union
property. Note that because Yk−1 P Z we also have {W |W ≥ Yk−1} = {W |W ≥ Yk},
which allows us to apply the Contraction property with our previous result to obtain
{Z|Z ≥ Yk−1} ⊥⊥{W |W ≥ Yk−1} | X. On the other hand, if Yk−1 belongs to W, then
similarly we have {Z|Z ≥ Yk−1} Y X \ Mk−1 ⊥⊥{W |W = Yk−1} | Mk−1 which yields
{Z|Z ≥ Yk−1} ⊥⊥{W |W = Yk−1} | XY{W |W ≥ Yk} due to the Weak Union property,
and we can apply the Contraction property to obtain {Z|Z ≥ Yk−1} ⊥⊥{W |W ≥
Yk−1} | X. In both cases we end up with the same result. In the same way, we can
proceed recursively with every label in reverse order to obtain eventually Z ⊥⊥ W | X.
Suppose now that Yi and Yj do belong to the same irreducible label factor YF , then
from Lemma B.2 we have that Z X YF ⊥
⊥ W X YF | X Y Y \ YF on which we apply
the Weak Union property to obtain Z ⊥
⊥ W | X. This contradicts our initial result,
and concludes the first part of this proof.

We shall now turn to the second part and prove that the converse holds when p

supports the Intersection property. Suppose that Yi and Yj do not belong to the same
irreducible label factor, and let {Z, W} be a partition of the labels such that Z is the
irreducible label factor which contains Yi. From the label factor assumption for Z
we have that Z ⊥⊥ W | X. Now, consider Y1 an arbitrary label from Y. If Y1 belongs
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to Z then from the Weak Union property we obtain {Y1} ⊥⊥ W | U \ (W Y {Y1}),
which defines a Markov blanket of Y1 in U. Moreover, either this Markov blanket is
a Markov boundary, or one of its proper subsets is. Because the Intersection property
holds, we have that this Markov boundary is unique and thus M1 P U \ (W Y {Y1}),
which does not contain any label from W. On the other hand, if Y1 belongs to
W, then similarly we have Z ⊥⊥{Y1} | U \ (Z Y {Y1}) and the Markov boundary
of Y1 in U does not contain any label from Z. We can now go on with a second
arbitrary label Y2 P Y \ {Y1}. From the Decomposition property we have that
Z \ {Y1} ⊥⊥ W \ {Y1} | X. If Y2 belongs to Z then from the Weak Union property
we have {Y2} ⊥⊥ W \ {Y1} | U \ (W Y {Y1, Y2}) and from the Intersection property
the Markov boundary of Y2 in U \ {Y1} does not contain any label from W. On the
other hand, if Y2 belongs to W we have Z \ {Y1} ⊥⊥{Y2} | U \ (Z Y {Y1, Y2}) and
the Markov boundary of Y2 in U \ {Y1} does not contain any label from Z. We can
proceed iteratively with every label in the same way, in any order, to obtain that
the Markov boundary of each label Yk in U \ {Y |Y < Yk} does not contain any
label from W when Yk P Z, nor any label from Z when Yk P W. So, for every label
ordering, there exists a partition {Z, W} such that Yi P Z, Yj P W and no label from
Z is adjacent to a label from W in G. In other words, for every ordering there may
be no path between Yi and Yj in G. This concludes the proof.

Proof of Theorem 5.7. If a path exists between Yi and Yj in G then owing to Lemma B.1
all pairs of successive labels in the path are in the same ILF, and by transitivity Yi and
Yj necessarily belong to the same ILF. We may now prove the converse. Suppose that
Yi and Yj belong to the same irreducible label factor, denoted YF . Define {Wi, Wj}
a partition of Y such that Yi P Wi and Yj P Wj . Then, owing to Lemma B.2, we
have that Wi X YF ⊥
⊥ Wj X YF | X Y Y \ YF . Using the Weak Union property,
we obtain Wi ⊥
⊥ Wj | X. Consider W i

1 an arbitrary label from Wi. Using the
Composition property, we have that either {W i

1} ⊥
⊥ Wj | X or Wi \ {W i
1} ⊥
⊥ Wj | X.

Consider W i
2 another arbitrary label from Wi \ {W i

1}, we can apply the Composition
property again on the second expression to obtain that either {W i

2} ⊥
⊥ Wj | X or
Wi \ {W i

1, W i
2} ⊥
⊥ Wj | X. If we proceed recursively, we will necessarily find a

variable W i
k P Wi such that {W i

k} ⊥
⊥ Wj | X. Likewise, we can proceed along the
same line to exhibit a variable W j

l P Wj such that {W i
k} ⊥
⊥{W j

l } | X. In other
words, for every partition {Wi, Wj} of the labels such that Yi P Wi and Yj P Wj ,
there exists at least one label {W i

k} in Wi and one label {W j
l } in Wj , such that

{W i
k} ⊥
⊥{W j

l } | X. So there necessarily exists a path between Yi and Yj in G. This
concludes the proof.

We now introduce Lemma B.3 in order to derive Theorem 5.8.
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Lem. B.3 Suppose p supports the Composition property. Then, for two distinct labels Yi and
Yj , if {Yi} ⊥
⊥{Yj} | X then {Yi} ⊥
⊥{Yj} | Mi for every Markov blanket Mi of Yi in X.
Moreover, if there exists a Markov blanket Mi of Yi in X such that {Yi} ⊥
⊥{Yj} | Mi

then {Yi} ⊥
⊥{Yj} | X.

Proof of Lemma B.3. First, we prove that {Yi} ⊥⊥{Yj} | X implies {Yi} ⊥⊥{Yj} | Mi,
for every Markov blanket Mi of Yi in X. We may rewrite {Yi} ⊥⊥{Yj} | X as
{Yi} ⊥⊥{Yj} | Mi Y X \ Mi. From the Markov blanket assumption for Mi, we also
have {Yi} ⊥⊥ X \ Mi | Mi. We can now apply the Contraction property, to obtain
{Yi} ⊥⊥{Yj} Y X \ Mi | Mi, and then the Decomposition property which yields
{Yi} ⊥⊥{Yj} | Mi. Second, we prove that if there exists a Markov blanket Mi of Yi

in X such that {Yi} ⊥⊥{Yj} | Mi then necessarily {Yi} ⊥⊥{Yj} | X holds. From the
Markov blanket assumption, we have {Yi} ⊥⊥ X \ Mi | Mi. Using the Composition
property we obtain {Yi} ⊥⊥{Yj} Y X \ Mi | Mi, and then from the Weak Union
property we have {Yi} ⊥⊥{Yj} | X. This concludes the proof.

Proof of Theorem 5.8. If p supports the Composition property, then from Lemma B.3
the statement {Yi} ⊥⊥{Yj} | Mi, with Mi a Markov blanket of Yi in X, is equivalent
to the statement {Yi} ⊥⊥{Yj} | X, and we can use Theorem 5.7 to conclude.

Proof of Theorem 5.9. To keep the subsequent developments uncluttered, we con-
sider without loss of generality that the label set Y = {Y1, . . . , Ym} is ordered ac-
cording to <, so that Yi < Yj ⇐⇒ i < j. Second, we denote Yi,j

ind the set Yi
ind in its

intermediary state at line 5 when Yj is being processed, while Yi
ind denotes its state at

the end of the procedure. Last, we adopt the notation {Z|Z > Yk} and {W |W > Yk}
to denote respectively the sets {Y |Y > Yk, Y P Z} and {Y |Y > Yk, Y P W} (with Z,
W subsets of Y), so that Z P Z and W P W by convention.

We start by proving that Yi and Yj are in the same ILF if Yi and Yj are connected
in G. If two labels Yp and Yq (with Yp < Yq) are adjacent in G, then there exists a
set Yp,q

ind such that {Yp} ⊥
⊥{Yq} | X Y {Y |Y < Yp} Y Yp,q
ind, and from Lemma B.1 Yp

and Yq belong to the same ILF. Now, if a path exists between Yi and Yj in G, then all
pairs of successive labels in the path are in the same ILF, and by transitivity Yi and
Yj necessarily belong to the same ILF.

To show the converse, we shall prove by contradiction that if Yi and Yj belong to
the same ILF, then there exists a path between Yi and Yj in G. Suppose there is no
such path, then there exists a partition {Z, W} of Y such that Yi P Z, Yj P W, and
every label in Z is non-adjacent to every label in W. Equivalently, for every label
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Yk P Y we have {W |W > Yk} Ď Yk
ind if Yk P Z, and {Z|Z > Yk} Ď Yk

ind if Yk P W.
To proceed, we shall first prove by induction that

∀k > i, {Yi} ⊥⊥ Yi,k
ind | X Y {Y |Y < Yi}.

For k = i + 1, we have that Yi,k
ind = ∅ so the result holds trivially. Suppose that

{Yi} ⊥⊥ Yi,k
ind | X Y {Y |Y < Yi} holds for some k. If {Yi} ⊥⊥{Yk} | X Y {Y |Y <

Yi} Y Yi,k
ind, then Yi,k+1

ind = Yi,k
ind Y {Yk} and {Yi} ⊥⊥ Yi,k+1

ind | X Y {Y |Y < Yi} due to
the Contraction property. Otherwise, Yi,k+1

ind = Yi,k
ind and we end up with the same

result. Therefore, the result holds for every k > i by induction, and setting k = m

yields {Yi} ⊥⊥ Yi
ind | X Y {Y |Y < Yi}. Now, we prove a second result by induction:

∀k, {Z|Z ≥ Yk} ⊥⊥{W |W ≥ Yk} | X Y {Y |Y < Yk}.

For k = m, we have {Z|Z ≥ Yk} = {Z|Z ≥ Yk} = ∅ so the result holds triv-
ially. Consider the previous label, Yk−1, and suppose it belongs to Z, then due
to our previous result we have {Yk−1} ⊥⊥ Yk−1

ind | X Y {Y |Y < Yk−1}. Since
{W |W > Yk−1} Ď Yk−1

ind , we may apply the Decomposition property to obtain
{Yk−1} ⊥⊥{W |W ≥ Yk−1} | X Y {Y |Y < Yk−1}. Combining the last expression with
{Z|Z ≥ Yk} ⊥⊥{W |W ≥ Yk} | X Y {Y |Y < Yk} yields {Z|Z ≥ Yk−1} ⊥⊥{W |W ≥
Yk−1} | XY{Y |Y < Yk−1} due to the Contraction property. The same demonstration
holds if Yk−1 P W. Therefore, the results holds for every k by induction. Setting
k = 1 in the expression above yields Z ⊥⊥ W | X, therefore Yi and Yj belong to
distinct ILFs. This concludes the proof.

We now introduce Lemma B.4 in order to derive Theorem 5.10.

Lem. B.4 Suppose p supports the Intersection property. Let Y1, Y2 denote two disjoint subsets of
Y, and define Mi the Markov boundary of Yi in U. Then, M = (M1 YM2)\(Y1 YY2)
is the Markov boundary of Y1 Y Y2 in U.

Proof of Lemma B.4. We show first that the statement holds for n = 2 and then
conclude that it holds for all n by induction. First, we will prove that M is a
Markov blanket. Let W denote U \ (Y1 Y Y2 Y M). From the Markov blanket
assumption of M1 we have Y1 ⊥⊥ W Y (Y2 Y M2) \ (Y1 Y M1) | M1, on which we
apply the Weak Union property to obtain Y1 ⊥⊥ W | M Y Y2. Similarly we can derive
Y2 ⊥⊥ W | M Y Y1. Combining these two statements yields Y1 Y Y2 ⊥⊥ W | M due
to the Intersection property, which is the definition of a Markov blanket of Y1 Y Y2

in U. We will now prove that M is minimal. Suppose there exists Z Ď M such
that Y1 Y Y2 ⊥⊥ W Y Z | M \ Z, and let {Z1, Z2} be a partition of Z such that
Z1 = Z X M1 (and thus Z2 Ď Z X M2). From the Weak Union property we have
Y1 ⊥⊥ W Y Z1 | M \ Z1 Y Y2. From the Markov blanket assumption of M1 we also
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have Y1 ⊥⊥ W Y (M2 Y Y2) \ M1 | M1. Combining these two statements yields
Y1 ⊥⊥ WY (M2 YY2)\M1 YZ1 | M1 \Z1 due to the Intersection property. Similarly,
we can derive Y2 ⊥⊥ WY (M1 YY1)\M2 YZ2 | M2 \Z2. Therefore, we have Z1 = ∅
and Z2 = ∅ due to the Markov boundary assumption of respectively M1 and M2,
which implies Z = ∅ and M is a Markov boundary of Y1 Y Y2 in U. To conclude for
any n > 2, it suffices to set Y1 equal to Y1 Y . . . Y Yn−1 and Y2 = Yn to conclude
by induction. This concludes the proof.

Proof of Theorem 5.10. If p is faithful to a DAG, then the Markov boundary in U
of each label Yi is given by Mi = PCYi Y SPYi . Also, p supports the Intersection
property so we can use Lemma B.4 to conclude.

Proof of Theorem 5.11. We show first that the statement holds for n = 2 and then
conclude that it holds for all n by induction. Let W denote U \ (Y1 Y Y2 Y M).
From the Markov blanket assumption of M1 we have Y1 ⊥⊥ W Y (M2 Y Y2) \ M1 |
M1, on which we apply the Weak Union property to obtain Y1 ⊥⊥ W | M Y Y2.
Similarly we can derive Y2 ⊥⊥ W | M. Combining these two statements yields
Y1 Y Y2 ⊥⊥ W | M due to the Contraction property, which is the definition of a
Markov blanket of Y1 Y Y2 in U. We will now prove that M is minimal when
p supports the Intersection assumption. Suppose there exists Z Ď M such that
Y1 YY2 ⊥⊥ WYZ | M\Z, and let {Z1, Z2} be a partition of Z such that Z1 = ZXM1

(and thus Z2 Ď Z X M2). First, we will prove that Z1 = ∅. From the Weak
Union property we have Y1 ⊥⊥ W Y Z1 | (M Y Y2) \ Z1. From the Markov blanket
assumption of M1 we also have Y1 ⊥⊥ W Y (M2 Y Y2) \ M1 | M1. Combining
these two statements yields Y1 ⊥⊥ W Y (M2 Y Y2) \ M1 Y Z1 | M1 \ Z1 due to the
Intersection property, and therefore Z1 = ∅ due to the Markov boundary assumption
of M1. Second, we prove that Z2 = ∅. From the Decomposition property we
have Y2 ⊥⊥ W Y Z | M \ Z, on which we apply the Weak Union property to obtain
Y2 ⊥⊥ W Y Z2 | M \ Z2. From the Markov blanket assumption of M2 we also have
Y2 ⊥⊥ W Y M1 \ (Y2 Y M2) | M2. Again, combining these two statements yields
Y2 ⊥⊥ W Y M1 \ (Y2 Y M2) Y Z2 | M2 \ Z2 due to the Intersection property, and
therefore Z2 = ∅ due to the Markov boundary assumption of M2. Finally, we obtain
Z = Z1 Y Z2 = ∅, so M is a Markov boundary of Y1 Y Y2 in U. To conclude for any
n > 2, it suffices to set Y1 equal to Y1 Y . . . Y Yn−1 and Y2 = Yn to conclude by
induction. This concludes the proof.

Proof of Theorem 5.12. We show first that the statement holds for n = 2 and then
conclude that it holds for all n by induction. Let W denote U \ (Y1 Y Y2 Y M).
From the Markov blanket assumption of M1 we have Y1 ⊥⊥ W Y M2 \ M1 | M1, on
which we apply the Weak Union property to obtain Y1 ⊥⊥ W | M. Similarly we can

202 Appendix B Proofs



derive Y2 ⊥⊥ W | M. Combining these two statements yields Y1 Y Y2 ⊥⊥ W | M due
to the Composition property, which is the definition of a Markov blanket of Y1 Y Y2

in U.

We will now prove that M is minimal when p supports the Intersection property. Let
W denote U\(Y1 YY2 YM). Suppose there exists Z Ď M such that Y1 YY2 ⊥⊥ WY
Z | M \ Z, and let {Z1, Z2} be a partition of Z such that Z1 = Z X M1 (and thus
Z2 Ď Z X M2). From the Decomposition property we have Y1 ⊥⊥ W Y Z | M \ Z,
on which we apply the Weak Union property to obtain Y1 ⊥⊥ W Y Z1 | M \ Z1.
From the Markov blanket assumption of M1 we also have Y1 ⊥⊥ W Y M2 \ M1 | M1.
Combining these two statements yields Y1 ⊥⊥ WYM2 \M1 YZ1 | M1 \Z1 due to the
Intersection property. Similarly, we can derive Y2 ⊥⊥ W Y M1 \ M2 Y Z2 | M2 \ Z2.
Therefore, we have Z1 = ∅ and Z2 = ∅ due to the Markov boundary assumption
of respectively M1 and M2, which implies Z = ∅ and M is a Markov boundary of
Y1YY2 in U. To conclude for any n > 2, it suffices to set Y1 equal to Y1Y. . .YYn−1

and Y2 = Yn to conclude by induction. This concludes the proof.
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